Directions: This examination lasts 4 hours. Only one cheat sheet is allowed, but no electronic devices of any kind are permitted. Partial credit will be awarded to any relevant work; no credit will be awarded for unexplained answers, correct or not. Computations mistakes will be very lightly penalized. Accurate graphic representation of a problem will receive high consideration.

Throughout this exam, complex numbers are represented as $z = x + iy$, with x and y real numbers, and complex functions are denoted by $f(z) = u(x, y) + iv(x, y)$, where u and v are real functions of two real variables.

1. Find all complex numbers z such that the following equalities hold and indicate where these points are on the complex plane.

 (a) $z^4 = -16$

 (b) $e^z = 2 + 2i$

 (c) $\bar{z} = -z$

 (d) $\arcsin(z) = \pi i$

2. Consider a complex function $f(z)$ and a point in the complex plane z_0

 (a) Using the definition of the derivative, find an expression for $f'(z_0)$ by taking a limit along the x-direction.

 (b) Find another expression for $f'(z_0)$ by taking a limit along the y-direction.

 (c) If $f(z)$ is differentiable at z_0, what is the relation between the two expression you found? What is this called?

3. Find the inverse of the function $w = f(z) = e^{iz} \cos z$.

4. Consider the contour C made of the portion of the parabola $x = 9 - y^2$ that lies to the right of the y-axis, starting at $(0, 3)$ and ending at $(0, -3)$. Integrate the complex function $f(z) = ze^z$ along this contour.

5. Series

 (a) Determine the Taylor Series and its radius of convergence of $f(z) = 1/z$ centered at $z = -i$.

 (b) Determine the Laurent Series centered at $z = 1$ valid for $1 < |z - 1|$ of $f(z) = e^{z-1} + 2/z$.

6. Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+9)^2} dx$ using Cauchy’s Residue Theorem.

7. Evaluate $\int_{0}^{\infty} \frac{4}{x^{3/4}(x^2+1)} dx$ using Cauchy’s Residue Theorem.
8. (a) Sketch what happens to the inside, outside and boundary of the unit circle under the map
\[w = f(z) = \frac{1}{z} + 2 - i. \]
(b) Sketch how the map \(f(z) = e^z \) acts on the square having vortices \((0, 0), (\pi/4, 0), (0, \pi/4)\) and \((\pi/4, \pi/4)\).

9. Describe, in words and with a figure, what you would need to use the Poisson formula given below to solve Laplace’s equation on a simply closed domain other than the unit circle. You do not have to include every detail, but **everything you write must make mathematical sense**.

\[
u(r, \theta) = \int_0^{2\pi} \frac{1 - r^2}{1 - 2r \cos(\theta - \phi) - r^2} u(1, \phi) \, d\phi \quad (1)
\]

10. Consider the domain \(D \) in the \(xy \)-plane, enclosed by:
 I - the \(x \)-axis between 0 and 1,
 II - the hyperbola \(y = (x^2 - 1)^{1/2} \) for \(x \) between 1 and \(\sqrt{\phi} \),
 III - the hyperbola \(y = \frac{1}{x} \) for \(x \) between 1 and \(\sqrt{\phi} \),
 IV - the line \(y = x \) for \(x \) between 0 and 1,
 where \(\phi = \frac{1 + \sqrt{5}}{2} \).

 (a) Draw the domain.
 (b) Using a complex mapping, solve Laplace’s equation on \(D \) subject to the conditions that
 \(f(x, y) = 2x^2 \) along I,
 \(f(x, y) = 2 \) along II,
 \(f(x, y) = 2x^2 - 2/x^2 \) along III,
 and \(f(x, y) = 0 \) along IV.
 (Hint: map the domain to a rectangle).