1. Compute AND plot the following complex numbers
 (a) \(z = \log(\sqrt{3} + i) \)
 (b) \(\sin z = 2 \)
 (c) \(z^3 = 1 + i \)

2. (21 pts) In the following proof of the Cauchy Integral formula, explain why each of the seven numbered statements hold. Your explanations should be brief (one sentence or formula for each statement).

Thm: If \(f(z) \) is analytic on and inside the closed contour \(C \) and \(z_0 \) is inside \(C \), then
\[
\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - f(z_0) = 0.
\]

Proof: Let \(C_\rho \) be a circle of radius \(\rho \) centered at \(z_0 \), with \(\rho \) sufficiently small so that \(C_\rho \) is entirely inside \(C \).

\[
\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - f(z_0) = \frac{1}{2\pi i} \int_{C_\rho} \frac{f(z)}{z - z_0} dz - f(z_0) = 0 \tag{1}
\]

\[
\frac{1}{2\pi i} \oint_{C_\rho} \frac{f(z)}{z - z_0} dz - f(z_0) = \frac{1}{2\pi i} \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} dz \tag{2}
\]

Also, \(\forall \epsilon > 0, \exists \rho > 0 \) such that \(|z - z_0| \leq \rho \implies |f(z) - f(z_0)| < \epsilon \), so
\[
\left| \frac{1}{2\pi i} \int_{C_\rho} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \leq \frac{1}{2\pi} \int_{C_\rho} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| |dz| \tag{3}
\]

\[
\frac{1}{2\pi} \int_{C_\rho} \left| \frac{f(z) - f(z_0)}{z - z_0} \right| |dz| < \frac{1}{2\pi} \int_{C_\rho} \frac{\epsilon}{\rho} |dz| \tag{4}
\]

\[
\frac{1}{2\pi} \int_{C_\rho} \frac{\epsilon}{\rho} |dz| \leq \epsilon \tag{5}
\]

Therefore
\[
\frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz - f(z_0) = 0. \tag{7}
\]

3. Consider the function \(f(z) = e^z + |z|^2 + \frac{z^2 - \bar{z}^2}{2} \).
 (a) Determine where this function is differentiable.
 (b) What is \(f'(z) \) when the function is differentiable?

4. Compute \(\oint_C f(z) dz \) for the following functions and paths \(C \):
5. Compute Laurent Series that are valid over the prescribed regions for the following functions
 (a) \(f(z) = \frac{\log(1+z)}{1-z} \) over \(|z| < 1\).
 (b) \(f(z) = \frac{1}{2z^4 + 2iz + 12} \) over \(2 < |z| < 3\).

6. Compute the residues at all the isolated singularities of the following functions.
 (a) \(f(z) = (\tanh z)^2 \)
 (b) \(f(z) = \frac{1}{z/(2+z)} \).

7. Consider the function \(f(R) = \int_{C_R} \frac{dz}{(1+z^2)(2x-z-6)} \), where \(C_R \) is the upper half-circle of radius \(R \) centered at the origin with diameter on the real axis (positively oriented). Compute \(f(R) \) for \(R > 0 \).

8. Compute \(\int_0^\infty \frac{dx}{x^{a+(2+x)}} \), with \(a \in \mathbb{R} \), using the Residue Theorem, and provide a range for values of \(a \) for which this procedure is valid.

9. Describe the effects of the following mappings on representative curves within the complex planes
 (a) \(f(z) = z^4 \)
 (b) \(f(z) = \frac{1+z}{i-z} \)
 (c) \(f(z) = e^z \)

10. Use a polynomial complex mapping to solve Laplace’s equation for \(h(x,y) \) over the region bounded by the four sides \(C_1 : 0 \leq x \leq 1, C_2 : y = x, \) for \(0 \leq x \leq 1, C_3 : x^2 - y^2 = 1, \) for \(1 \leq x \leq \sqrt{1+\sqrt{5}}/2 \), and \(C_4 : y = 1/x \) for \(1 \leq x \leq \sqrt{1+\sqrt{5}}/2 \). with the following boundary conditions:
 \(\frac{\partial h}{\partial n} = 0 \) along \(C_1 \) and \(C_4, \)
 \(h(x, y) = 2 \) along \(C_2, \)
 \(h(x, y) = 7 \) along \(C_3. \)