- 1. (20 points, 4 points each) Determine whether the following statements are True or False.
 - (a) If an object moves with the same average velocity over every time interval, then its average velocity equals its instantaneous velocity at any time.
 - (b) If f'(x) = g'(x) for all real number x, then f(x) = g(x).
 - (c) The sinusoidal function $y = -3\sin(4x) + 5$ completes 4 cycles in the interval $[0, 2\pi]$.
 - (d) For sufficiently large values of x, $f(x) = 1000x^3 + 345x^2 + 17x + 394$ is less than $g(x) = 0.01x^4$.
 - (e) If $\lim_{x\to 3} f(x) = 7$ and g(3) = 4, then $\lim_{x\to 3} (f(x) + g(x)) = 11$.

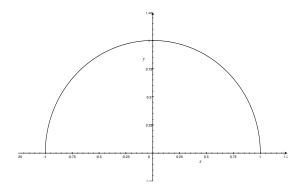
Answers: (a) True. (b) False. (c) True. (d) True. (e) False.

- 2. (30 points, 6 points each) Choose A, B, C, D, or E for each of the following questions.
 - (a) Which of the following functions have an inverse?
 - (I) $\cos x$ with domain [0, 1]
- (II) $e^{-(x-1)}$
- (III) $(x-2)^2$ with domain $(-\infty, 1]$

- A) II only
- B) I and II only
- C) I and III only
- **D)** III only
- E) I, II and III

- (b) Which of the following functions are increasing functions?
 - (I) the derivative of an increasing function
- (II) the derivative of a concave up function
- (III) the inverse of an increasing function
- (IV) the inverse of a concave up function

- **A)** I and III only
- **B)** II and III only
- C) II and III only D)
- **D)** I and IV only
- E) III and IV only
- (c) The graph of a function g(x) is given below. Which of the following statements about its derivative g'(x) are true?



- (I) q'(0) = 0.
- (III) g'(x) is decreasing over (-1,1).
- (II) q'(x) is an odd function.
- (IV) g'(x) has vertical asymptotes at $x = \pm 1$.

- A) I only
- **B)** I and II only
- C) I and III only
- **D)** II and III only
- E) I, II, III and IV

- (d) Which of the following statements are true?
 - (I) If f(x) is not continuous at x = a, then it is not differentiable at x = a.
 - (II) If f(x) is not differentiable at x = a, then it is not continuous at x = a.
 - (III) If f(x) is differentiable at x = a, then it is continuous at x = a.
 - A) II only
- B) I and II only
- C) I and III only
- **D)** III only
- E) I, II and III

- (e) Consider the logarithmic function $f(x) = c \ln(kx)$, where c < 0 and k > 0 are constants. The graph of f(x) is
 - A) increasing and concave up. B) decreasing and concave up. C) increasing and concave down.
 - **D)** decreasing and concave down.

Answers: (a) E. (b) B or C. (c) E. (d) C. (e) B.

3. (10 points) Consider the piecewise function f(x) defined below. Can you find a value for b such that f(x) is continuous at x = 2. If yes, find this value. If not, explain why.

$$f(x) = \begin{cases} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{|x-2|}, & \text{for } x \neq 2\\ b, & \text{for } x = 2. \end{cases}$$

Solutions: f(x) is continuous at x = 2 if

$$b = f(2) = \lim_{x \to 2} f(x) = \lim_{x \to 2} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{|x-2|}.$$

Because of the absolute value sign, we need to discuss two one-sided limits.

$$\lim_{x \to 2^{+}} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{|x-2|} = \lim_{x \to 2^{+}} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{x-2} = \lim_{x \to 2^{+}} \cos\left((x-1)\frac{\pi}{2}\right)$$
$$= \cos\left((2-1)\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0.$$

$$\lim_{x \to 2^{-}} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{|x-2|} = \lim_{x \to 2^{+}} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{-(x-2)} = \lim_{x \to 2^{+}} -\cos\left((x-1)\frac{\pi}{2}\right)$$
$$= -\cos\left((2-1)\frac{\pi}{2}\right) = -\cos\left(\frac{\pi}{2}\right) = -0 = 0.$$

Since left-hand limit and right-hand limit are equal,

$$\lim_{x \to 2} \cos\left((x-1)\frac{\pi}{2}\right) \frac{x-2}{|x-2|} = 0.$$

Therefore, when b = 0, f(x) is continuous at x = 2.

4. (8 points) Use the Intermediate Value Theorem to show that the equation $e^x = x + 2$ has a solution on the interval [0,2].

Solutions: $f(x) = e^x - x - 2$ is continuous on [0, 2]. Because

$$f(0) = e^0 - 0 - 2 = 1 - 2 = -1 < 0$$
, and $f(2) = e^2 - 2 - 2 = e^2 - 4 > 0$ (since $e > 2$),

0 is a number between f(0) and f(2). By IVT, there exists a number c in [0,2] such that $f(c)=e^c-c-2=0$. In other words,

$$e^c = c + 2$$
.

or, c is a solution to the equation $e^x = x + 2$.

5. (10 points) $g(x) = \frac{1}{1-x}$. Using the definition of a derivative, find g'(x).

Solutions:

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{1 - (x+h)} - \frac{1}{1 - x}}{h} = \lim_{h \to 0} \frac{1}{h} \frac{(1-x) - [1 - (x+h)]}{[1 - (x+h)](1 - x)}$$
$$= \lim_{h \to 0} \frac{1}{h} \frac{1 - x - 1 + x + h}{[1 - (x+h)](1 - x)} = \lim_{h \to 0} \frac{1}{h} \frac{h}{[1 - (x+h)](1 - x)} = \lim_{h \to 0} \frac{1}{[1 - (x+h)](1 - x)}$$
$$= \frac{1}{(1 - x)^2}.$$

6. (10 points) What is the *y*-intercept of the tangent line to $m(x) = \frac{5x^3 + 1}{x}$ at x = -1?

Solutions: $m(x) = 5x^2 + \frac{1}{x} = 5x^2 + x^{-1} \Longrightarrow m'(x) = 10x - x^{-2} = 10x - \frac{1}{x^2}$. So the slope of the tangent line is

$$m'(-1) = 10(-1) - \frac{1}{(-1)^2} = -10 - 1 = -11.$$

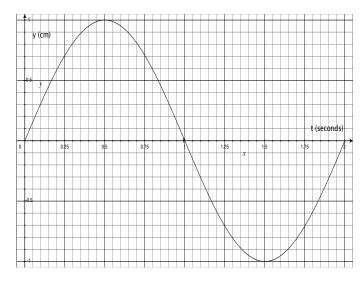
$$x = -1 \Longrightarrow y = m(-1) = 5(-1)^2 + \frac{1}{-1} = 5 - 1 = 4.$$

So a point on the tangent line is (-1, 4). The equation of the tangent line is

$$y - 4 = -11(x + 1)$$
$$y = -11x - 11 + 4$$
$$y = -11x - 7.$$

The y-intercept of the tangent line is -7.

7. A block attached to the end of a spring is moving vertically along the y-axis around y = 0. The graph below shows its y-coordinate as a function of time t.



- (a) (3 points) When (over what time interval(s)) is this block above y = 0?
- (b) (3 points) When (over what time interval(s)) is this block moving upward?
- (c) (6 points) Is $\frac{d^2y}{dt^2}\Big|_{t=0.5}$ positive or negative? What are its units? What is its practical meaning?

Solutions:

- (a) When 0 < t < 1, the *y*-coordinate is positive, so the block stays above y = 0.
- (b) When $0 \le t < 0.5$ and when $1.5 < t \le 2$, the y-coordinate is increasing, (or, equivalently, the velocity of the block is positive,) so it is moving upwards.
- (c) At t=0.5, the curve is concave down, so $\left.\frac{\mathrm{d}^2y}{\mathrm{d}t^2}\right|_{t=0.5}<0$. Its units are cm/s^2 . It represents the acceleration of the block at t=0.5 seconds.