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1 Introduction

The capstone project is an extension of work previously done by François Blanchette

and Terry P. Bigioni in which they studied the coalescence of drops with either a hori-

zontal reservoir or a drop of a different size (Blanchette and Bigioni, 2006). Specifically,

they looked at the partial coalescence of a drop, which leaves behind a smaller ”daugh-

ter” droplet due to the incomplete merging process. Numerical simulations were used

to study coalescence of a drop slowly coming into contact with a horizontal resevoir in

which the fluid in the drop is the same fluid as that below the interface (Blanchette and

Bigioni, 2006).

The research conducted by Blanchette and Bigioni starts with a drop at rest on a flat

interface. A drop of water will then merge with an underlying resevoir (water in this

case), forming a single interface. Our research involves using that same numerical ap-

proach only this time a soap bubble will be our fluid of interest.

Soap bubbles differ from water drops on the fact that rather than having just a

single interface, we now have two interfaces to take into account; the air inside the soap

bubble along with the soap film on the boundary, and the soap film with any other fluid

on the outside. Due to this double interface, some modifications will now be imposed

on the boundary conditions involving surface tension along the interface. Also unlike

drops, soap bubble thickness is finite which will mean we must keep track of it. As a

consequence, the film will have a weight and therefore a new forcing term will be added

to the governing equations. There are two things that are hoped to be achieved by some
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numerical simulations; one is to study the interaction of two soap bubbles, or of a soap

bubble and a soap film. The second is to study the interaction of a soap film and some

air flow.

2 Governing Equations

In the research done by Blanchette and Bigioni, the equations used were those of the

Navier-Stokes (1). The fluids were assumed to be ideal, meaning that they are incom-

pressible (2), with constant density ρ and viscosity µ. The velocity at the interface

location must be the same as the time derivative of the position interface (3):

ρ
Du⃗

Dt
= −∇P + µ∇2u⃗+ ρg⃗ (1)

∇ · u⃗ = 0 (2)

St = u⃗ (3)

In the equations above, u⃗ is the velocity field of the fluid; P is the pressure field; t

represents the time; S is the position of the interface; g⃗ is a vector in the direction of

gravity; D
Dt

is the material derivative that tracks the position of the fluid particle.

2.1 Boundary Conditions

Along with the governing equations of the fluid, boundary conditions must also be im-

posed and satisfied. The boundary conditions are as follows:
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n⃗ · T − n⃗ · T ′
= σn⃗(∇ · n⃗)−∇σ (4)

where T = −PI + µ[∇u⃗ + (∇u⃗)T ] is the inner fluid stress tensor defined in terms of

the velocity field as well as the local fluid pressure; T
′
defined as the same stress tensor

but it serves for the outside fluid; t⃗ is the unit vector tangential to the interface; σ is the

surface tension; and n⃗ is a normal unit vector that is normal to the interface and going in

the direction of the inner fluid towards the outer fluid. Condition (4) is at the interface,

and is the Stress Balance equation that allows the difference in stress vectors for both

the inner and outer fluid to be the same as the difference between the normal curvature

force and the tangential stress involving gradients of surface tension (Bush, 2003). There

is also the no-slip condition:

u⃗ = 0 (5)

Boundary condition (5) acts only on the side-walls due to axial symmetry in order for

the fluid to be finite. Numerically, it’s very difficult to deal with the boundary conditions

(4) on their own. To fix this, we will include a forcing term δs[σn⃗(∇ · n⃗) − ∇σ] in the

Navier Stokes equation (1) (Lafaurie et al. 1994), which takes into account the boundary

conditions. In the forcing term, δs is the surface Dirac delta function which is used in

order to limit the term to be non-zero only at the interface, and zero everywhere else;

and as result it yields the following:
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ρ
Du⃗

Dt
= −∇P + µ∇2u⃗+ ρg⃗ + δs[σn⃗(∇ · n⃗)−∇σ] (6)

∇ · u⃗ = 0 (7)

St = u⃗ (8)

In fact, we can say that this additional term is equivalent to the boundary conditions

through an extension of Duhamel’s principle. It will be easier to use the boundary

conditions numerically rather than to match stresses as in equation (4).

3 Modification of the Governing equations

3.1 Derivation Of The Soap Film Thickness

As metioned before, since the thickness of soap bubble is finite, the soap film will now

have a weight associated with it. The weight of the interface will be a force driven by

gravity. The weight of the interface is given by mg⃗ where m is the localized mass of the

soap film interface. The mass can also be related by both its density and volume, and

therefore can be written as ρdV g⃗ where dV is a volume element. We can also relate the

volume of the inteface to its thickness as the following dV = hdA where h = h(x, y, t)

represents the thickness of the soap film and dA = ∆x∆y represents the area element of

the interface. The main issue is going to be keeping track of how the thichkness of the

soap film is changing as time evolves, and so we will have to look at the term ∂h
∂t
. Let’s

consider a simple case where the have a flat surface in the xy−plane on the soap bubble.

The rate of change of the thickness can be described as ∂h
∂t

=Flow Rate in - Flow Rate out
Area

, and
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so this yields the following expression:

∂h

∂t
= − lim

∆x→0,∆y→0

4∑
i=1

1

∆x∆y
(u⃗ · n⃗i)dAi (9)
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The dAi terms represents the area of the four faces of the soap film, ni are the unit

normals of the each face respectively where i = 1, 2, 3, 4. The u⃗ · n⃗idAi terms each

represent the flow along a particular face (See Figure 1). The normals of each face are

as follows: n⃗1 =< −1, 0 >, n⃗2 =< 0,−1 >, n⃗3 = −n⃗1, and finally n⃗4 = −n⃗2. The areas

of the four elements are as follows: dA1 = h∆y = dA3 and dA2 = h∆x = dA4. By letting

the velocity field u⃗(x, y, t) =< u1, u2 > where u1 = u1(x, y, t) and u2 = u2(x, y, t) and

taking the all dot products for faces 1 and 3 on (9) yields the following:

u1(x0 +
∆x
2
, y0, t)h(x0 +

∆x
2
, y0, t)− u1(x0 − ∆x

2
, y0, t)h(x0 − ∆x

2
, y0, t)

∆x

repeating the same process but this time on faces 2 and 4 would yield a similar

expression. At the end, after taking all the dot products and evaluating the limit on
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equation (9), we obtain the desired result:

∂h

∂t
= −[

∂

∂x
(u1(x0, y0, t)h(x0, y0, t)) +

∂

∂y
(u2(x0, y0, t)h(x0, y0, t))] = −∇ · (hu⃗) (10)

This formula represents the change in thickness for a two dimensional flat surface. In

general, for any surface the change in thickness of any soap film is as follows:

∂h

∂t
= −[

∂

∂x̃
(hu⃗ · e⃗1) +

∂

∂ỹ
(hu⃗ · e⃗2)] = −∇s · (hu⃗). (11)

where ∇s is the surface gradient, ∇s · (hu⃗) is the surface divergence of the velocity

u⃗(x̃, ỹ, t) =< u1(x̃, ỹ, t), u2(x̃, ỹ, t) > on any given surface in the x̃ỹ orthogonal axis where

both e⃗1,e⃗2 are the orthonormal basis.

3.2 Derivation Of The Gravitational Forcing Term

Now there is the matter of including this forcing term into the Navier Stokes equation.

The forcing term is actually the weight of the interface, the force driven by gravity. This

term will be of the form Force
Volume

. This forcing term is known as the total gravitational

force, i.e total gravitational force =
∫
V
f⃗gdV =

∫
S
ρg⃗hdS. The question is what exactly

is f⃗g? From this expression, it’s definitely true to say that f⃗g = ρg⃗h dA
dV

where dA is the

area of the film and dV is the volume over which the force acts. This however is not a

useful term since both dA and dV are not local quantities. Looking back at the total

gravitational expression, the surface delta function would be more useful since it’s a term

that acts locally on the surface, and it has units of 1
L
, which is exactly the same units
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the expression area
volume

would give. Keeping this idea in mind, this total gravitational force

can we written as:
∫
V
f⃗gdV =

∫
V
ρg⃗hδsdV =

∫
S
ρg⃗hdS, and thus gives the desired forcing

term for the Navier Stokes equation: f⃗g = ρg⃗hδs. Also soap bubble in air have two

surfaces that define the inner and outer surfaces of the soap film; as a consequnce, the

pressure differntial term is twice that across of a single interface, i.e ∆p = 2[σn⃗(∇·n⃗)−∇σ]

(Bush, 2003). Finally, we now have the modified governing equations of the soap bubble

film as well as the soap film thickness as follows:

ρ
Du⃗

Dt
= −∇P + µ∇2u⃗+ ρg⃗ + δs[2(σn⃗(∇ · n⃗)−∇σ) + ρg⃗h] (12)

∇ · u⃗ = 0 (13)

St = u⃗ (14)

∂h

∂t
= −∇s · (hu⃗). (15)

4 Numerical Simulations

There is a numerical simulation code called SURFER used by Blanchette and Bigioni

to study the partial coalescence of water drops. One can also adopt the same program to

study the interactions between two soap bubbles merging or the interaction with another

fluid like air. The adaptation of the new forcing term in of the modified Navier Stokes

equations in SURFER shouldn’t be more difficult since the boundary condition term has

already been dealt with previously, and h will be a given quantity due to equation (11).

Numerically, equation (11) can be solved by using a centered finite difference method

for both space and time. Also numerically the main issue is being able to calculate the
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surface divergence since the interface may not always be horizontal. Assume that, just

as in the current code, the interface is a surface of revolution of a curve given by a radius

r(z) where the z axis is the axis of rotation. Then allowing x = r(z)sinθ, y = r(z)cosθ,

and z = z where θ is angle of rotation, the surface of revolution can be represented

parametrically. Afterwards, the surface gradient will be defined on a orthogonal system

which would allow a surface divergence to be calculated. An example would be taking a

bubble in the shape of a sphere. The curve will be of the form r(z) =
√
1− z2 rotated

about the z axis. One will then represent the surface gradient and the velocity in spherical

coordinates on a orthogonal system in order to calculate a surface divergence.

5 Conclusion

The thickness of the soap film being finite lead to the idea of finding the expression that

could keep track of how the the film changes with respect to time; because of this, it also

yield the gravitational forcing term which was added into the Navier Stokes equations

for numerical simulations. Further research can be done on SURFER, by modifying

the current program with equation (12-15) to study the coalescence between two soap

bubbles or a soap bubble with any other fluid. For example, as Blanchette and Bigioni

did partial coalescence of water drops, perhaps a smiliar phenomenon could occur with

soap bubble, where possibly a daughter bubble can form after the merging with another

bubble. Another application would be the study of bubbles bouncing back from a surface

like bath water, or the possibility of bubble deformation.

8



References

[1] Blanchette, F. and Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid inter-

faces. J. Fluid Mech. 1-19.

[2] Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. and Zanetti, G. 1994 Modelling

merging and fragmentation in multiphase flows with SURFER. J. Comp. Phys. 113,

134-147.

[3] Bush, J. 2003 Surface Tension Module. Department Of Mathematics, MIT. Lec 1-3.

[4] Stewart, J. 2003 Early Transcendentals Multivariable Calculus.

9


