Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2012

Instructions: This examination lasts 4 hours.

- Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation.
- Partial credit will be awarded to relevant work.
- **Problem 1.** Find dimensions and bases for the four fundamental subspaces: column space, null space, row space, and left null space for

$$A = \begin{bmatrix} -1 & 8 & -7 & -9 \\ -1 & -1 & -1 & 0 \\ 0 & -3 & 2 & 3 \end{bmatrix}$$

Problem 2. Given the system of linear equations

- (a) Find all possible values of b_1, b_2 , and b_3 for which this system has solutions;
- (b) Find all possible solutions of this system if $b_1 = 3$, $b_2 = -2$, and $b_3 = 0$.

Problem 3. Let

$$A = \begin{bmatrix} 4 & 0\\ 2 & -5\\ -6 & 1\\ -2 & 2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} -1\\ 3\\ 1\\ 1 \end{bmatrix}$$

- (a) Find \hat{x} that solves $\min_{x \in \mathbb{R}^4} ||Ax b||_2$.
- (b) Describe how the singular value decomposition of A can be used to solve (a).

Problem 4. Prove the following:

- (a) If λ is an eigenvalue of a Hermitian matrix A, then λ must be real.
- (b) Let A be a *nilpotent* matrix, i.e., $A^p = 0$ for some integer $p \ge 1$. Then all of the eigenvalues of A are 0.

Problem 5. Let $v \in \mathbb{R}^n$ with $||v||_2 = 1$.

- (a) Show that $P = vv^T$ is a projection matrix.
- (b) Determine the eigenvalues and the corresponding eigenvectors of P.
- **Problem 6.** Suppose v_1, v_2 , and v_3 are vectors in \mathbb{R}^4 . Describe each step (mathematically and in detail) how you would compute an orthonormal basis for the subspace spanned by v_1, v_2 , and v_3 .

Problem 7. Show that the largest eigenvalue λ^* of a symmetric matrix A solves

$$\lambda^{\star} = \text{maximize } x^T A x \text{ subject to } x^T x = 1.$$

Problem 8. State whether each of the following statements is true or false. Briefly explain why.

- a. If $y \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$, then the decomposition $y = y_N + y_R$, where y_N is in the null space of A and y_R is in the range space of A^T , is unique.
- b. If A and B are similar, then the trace of A is equal to the trace of B.

- c. If A is positive definite, then A has only positive eigenvalues.
- d. If $x, y \in \mathbb{R}^n$, then $||x y||_2 \ge | ||x||_2 ||y||_2 |$.