Directions: Duration: 4 hours. One crib sheet is allowed. Each question is worth 10 points. Credit will be awarded mainly based on the level of work and explanation (no explanation = no credit).

1. Sketch the graphs the following functions (show your analysis):

$$
\text { (a) } y(x)=\frac{x}{\sqrt{1-x^{2}}}, \quad \text { (b) } y(x)=\ln \frac{x+1}{x-1} \text {. }
$$

2. Find each limit if it exists. Otherwise, explain why it does not exist.
(a) $\lim _{x \rightarrow 0} \sin \frac{1}{x}$,
(b) $\lim _{x \rightarrow 0+} e^{\frac{1}{x}} \ln x$,
(c) $\lim _{b \rightarrow a} \frac{b^{5}-a^{5}}{b-a}$,
(d) $\lim _{x \rightarrow 0}\left(\frac{2}{\pi} \tan ^{-1} x\right)^{\frac{1}{x}}$.
3. Let $y(x)$ be defined implicitly by $(1+y)^{3}=\ln (x+y)$. Evaluate $\frac{d y}{d x}$ when $y=0$.
4. Find the following indefinite integrals:
(a) $\int \frac{e^{x}}{\sqrt{1+e^{2 x}}} d x$,
(b) $\int \frac{d x}{\sqrt{2-x}}$,
(c) $\int e^{x} \cos 2 x d x$.
5. Determine whether the definite integrals exist. You do not need to find their values, but you must justify your answer.

$$
\text { (a) } \int_{1}^{\infty} \sin \frac{1}{x} d x, \quad(b) \int_{0}^{1} \frac{d x}{\cos (x-1)}, \quad \text { (c) } \int_{0}^{\infty} \tanh ^{-1} x d x
$$

6. Let $f(x)$ be a continuous function from the interval [01] to itself, i.e., $f:\left[\begin{array}{lll}0 & 1]\end{array}\right]\left[\begin{array}{ll}0 & 1\end{array}\right]$. Prove that there is a point $x_{0} \in\left[\begin{array}{ll}0 & 1\end{array}\right]$ such that $f\left(x_{0}\right)=x_{0}$.
7. Find the second-order Taylor polynomials for:
(a) $f(x)=\cos \sqrt{x-1}$ around $x_{0}=1$.
(b) $f(x)=\frac{1}{1+x+y}$ around $\left(x_{0}, y_{0}\right)=(0,0)$.
8. Find all the critical points of the function $u(x, y)=x^{2}-3 x y+y^{2}$ and classify these points as maxima, minima or saddle.
9. Use Gauss's Divergence Theorem to evaluate the integral $\int_{S} \vec{u} \cdot d \vec{S}$, where S is a sphere of radius R around the origin, $\vec{u}(x, y, z)=(x-y) \vec{i}+(y-z) \vec{j}+(z-x) \vec{k}$, and $(\vec{i}, \vec{j}, \vec{k})$ are the unit vectors along the (x, y, z) directions.
10. Suppose the Sun's surface is a sphere of radius R and consider the the half-sphere that is facing Earth, whose perimeter contour is denoted by C. Use Stokes' Theorem to evaluate the contour integral $\oint_{C} \vec{u} \cdot d \vec{r}$, where $\vec{u}(x, y, z)=x y z(\vec{i}+\vec{j}+\vec{k})$ and (x, y, z) is measured from the Sun's center.
