Duration: 240 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100 .

1. Determine as accurately as possible the limit as $n \rightarrow \infty$ of sequences with following general terms:
(a) $a_{n}=\frac{e^{n}}{n!}$
(b) $b_{n+1}=b_{n}^{2}+1 / 8$, with $b_{1}=1 / 2$
(c)

$$
c_{n}=\sum_{k=0}^{k=n} \frac{1}{(\sqrt{k}+1)^{2}}
$$

(d)

$$
d_{n}=\sum_{k=0}^{k=n}(-1)^{k} \frac{x^{2 k+1}}{(2 k)!}
$$

2. Compute the following limits:
(a)

$$
\lim _{x \rightarrow 0} \frac{\sin x}{|x|}
$$

(b)

$$
\lim _{x \rightarrow 0}\left(\frac{\cos x}{x^{2}+4}\right)\left(\frac{e^{x}-\sin x-1}{x^{2}}\right)
$$

(c)

$$
\lim _{x \rightarrow 0} \frac{(\sin (x+3))^{2}-(\sin 3)^{2}}{x}
$$

(d)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{4}}{x^{4}+y^{4}}
$$

3. Calculate the following derivatives
(a) $\frac{d y}{d x}$ given that $y^{3}+3 y^{2} x+3 y x^{2}+x^{3}=x$.
(b)

$$
\frac{d}{d t}\left(\int_{0}^{t^{2}} e^{t x^{1 / 2}} d x\right)
$$

(c) The price of an individual plane ticket, $p(t)$, the number of passengers on a plane, $n(t)$, and the expenses of flying the plane, $e(t)$, are all functions of time, t. Give an expression for the rate of change of the profits of operating this plane.
(d) The coordinates of a point on a surface are given by $(x(r, s), y(r, s), z(r, s))$. Give a expression for the rate of change of the distance between such a point and the origin, with respect to changes in r.
4. Compute the following integrals
(a) $\int e^{2 x} \cos (3 x) d x$
(b) $\int \frac{d x}{\sqrt{9-x^{2}-6 x}}$ for $-3-\sqrt{18} \leq x \leq-3+\sqrt{18}$.
5. Surfaces and tangent planes
(a) Sketch the surface give by $z=f(x, y)=1+x^{2}+2 y^{2}-8 y$.
(b) Give an expression for the tangent plane going through a point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$
6. Using polar coordinates, find the average value of $f(x, y)=y^{3} /\left(x^{2}+y^{2}\right)^{3 / 2}$ over the triangle with vertices $(0,0),(2,2)$ and $(-2,2)$.
7. Integral in general coordinates Find the area of the region R enclosed by the curves $e^{x}=0.5 / \sin y$, $e^{x}=3 / \sin y, e^{x}=1 / \cos y$ and $e^{x}=2 / \cos y$, see figure below.

8. If the density of dust collected by a single passage of a vacuum cleaner is given by $d(x, y)=5+x^{2} y(g / m)$, how much dust would be collected by a vacuum cleaner traveling along the upper half of a semi-circle of radius 2 centered at the origin?
9. Consider the part of the surface $z=4-x^{2}-y^{2}$ (in meters) above the circle in the $x y$-plane of radius 1 m centered at the origin, oriented with its normal pointing up. What is the flux of water into that surface if the water velocity is $\vec{F}(x, y, z)=(2 x, 2 y,-4 z+1) \mathrm{m} / \mathrm{s}$? How long would it take to get 31.416 m^{3} of water through this surface?
10. General questions
(a) Give two properties of the gradient of a function.
(b) Give the formula of a function of one variable with a local minimum and a horizontal asymptote at $y=2$.
(c) Explain (briefly) how Green's theorem is a special case of Stokes's theorem.
(d) Give a definition of the divergence of a vector field in terms of flux through a surface.
(e) If \vec{F} is a velocity field, how would you interpret the meaning of curl \vec{F} ?
(f) Can there be a non-constant, periodic function with at least one horizontal asymptote? Explain.
(g) Is the following integral equal to a finite number? Explain. $\int_{0}^{\infty} \frac{e^{-2 x}}{x^{1 / 3}+x} d x$
(h) Sketch and give the formula for the volume element in spherical coordinates.

