Directions: Duration: 4 hours. One crib sheet is allowed. Credit will not be given to answers without explanation. Partial credit will be awarded to relevant work. Enumerate the papers and do **not** staple them.

- 1. Sketch the graph of the function $y(x) = \ln \sqrt{\frac{x+1}{x-1}}$ for real values of x (where the function is defined).
- 2. Find each of the following limits, if it exists.

(a)
$$\sum_{k=0}^{\infty} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{-k/n}$$
, (b) $\lim_{x \to 1+} e^{\frac{1}{x-1}} \ln(x)$, (c) $\lim_{(x,y) \to (0,0)} y \sin \frac{1}{x}$.

3. For each of the functions defined below, seek an expression for $\frac{dy}{dx}$ as an explicit function of *x* alone or as an explicit function of both *x* and *y*.

(a)
$$y(x) = \int_{1}^{\sqrt{x}} \operatorname{sech}(x) \, dx$$

(b) y(x) is defined implicitly by the equation $\ln x - \ln y = x - y$.

- 4. Let f(x) be a continuous function from [0, 1] to itself. Prove that there is a point $x_{\star} \in [0, 1]$, such that $f(x_{\star}) = x_{\star}$.
- 5. Give an example of a function, f(x), that is differentiable for all x > 0, such that $\lim_{x\to\infty} f(x) = 0$ but $\lim_{x\to\infty} f'(x)$ does not exist.
- 6. Find each of the antiderivatives.

(a)
$$\int \frac{x \, dx}{x^2 - 4}$$
, (b) $\int e^{-x} \cos 3x \, dx$, (c) $\int \frac{e^x}{\sqrt{1 - e^x}} \, dx$.

7. Determine whether the definite integral $\int_0^1 \frac{dx}{\ln(1+x)}$ exists. You do not need to find it.

- 8. Suppose that a sun is a spherical ball of radius R_{\odot} , whose mass density is radially symmetric and described by some function $\rho(r)$, where $r^2 = x^2 + y^2 + z^2$. Let M(a) be the total mass of the portion of the sun that is a concentric ball of radius a, where $0 \le a \le R_{\odot}$. If you know that $M(a) = Ca^{5/2}$, where C is a constant, what is $\rho(r)$?
- 9. Find all the critical points of the function $u(x, y) = x^3 + y^2 6xy$ and classify them as maxima, minima or saddle.
- 10. What is the radius of convergence of the Taylor series of the function $f(x,y) = \frac{1}{1 + \sin(x)\sin(y)}$ around the point $(x_0, y_0) = (0, 0)$?
- 11. Let $\vec{\mathbf{u}}(x, y, z) = 2xe^{-z}\vec{\mathbf{i}} + 2ye^{-z}\vec{\mathbf{j}} (x^2 + y^2)e^{-z}\vec{\mathbf{k}}$. be the water velocity field around a cylindrical ocean coral of radius *R*, where *z* is measured from the ocean's bottom and x = y = 0 is the coral's center.
 - (a) Show that \vec{u} is conservative and find its potential function, $\phi(x, y, z)$.
 - (b) Provide an integral for the work done by the water on an angelfish swimming around the bottom of the coral.
- 12. Let $\vec{\mathbf{H}}(x, y, z) = (x y)\vec{\mathbf{i}} + (y z)\vec{\mathbf{j}} + (z x)\vec{\mathbf{k}}$ be the magnetic field in and around a spherical ball of radius *R*. Calculate the flux $\oint_{S} (\vec{\mathbf{H}} \cdot \vec{\mathbf{n}}) ds$ on the ball's surface, where $\vec{\mathbf{n}}$ is the outward normal.