Directions: Duration: 4 hours. One crib sheet is allowed. Credit will not be given to answers without explanation. Partial credit will be awarded to relevant work. Enumerate the papers and do not staple them.

1. Sketch the graph of the function $y(x)=\ln \sqrt{\frac{x+1}{x-1}}$ for real values of x (where the function is defined).
2. Find each of the following limits, if it exists.
(a) $\sum_{k=0}^{\infty} \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-k / n}$,
(b) $\lim _{x \rightarrow 1+} e^{\frac{1}{x-1}} \ln (x)$,
(c) $\lim _{(x, y) \rightarrow(0,0)} y \sin \frac{1}{x}$.
3. For each of the functions defined below, seek an expression for $\frac{d y}{d x}$ as an explicit function of x alone or as an explicit function of both x and y.
(a) $y(x)=\int_{1}^{\sqrt{x}} \operatorname{sech}(x) d x$.
(b) $y(x)$ is defined implicitly by the equation $\ln x-\ln y=x-y$.
4. Let $f(x)$ be a continuous function from $[0,1]$ to itself. Prove that there is a point $x_{\star} \in[0,1]$, such that $f\left(x_{\star}\right)=x_{\star}$.
5. Give an example of a function, $f(x)$, that is differentiable for all $x>0$, such that $\lim _{x \rightarrow \infty} f(x)=0$ but $\lim _{x \rightarrow \infty} f^{\prime}(x)$ does not exist.
6. Find each of the antiderivatives.
(a) $\int \frac{x d x}{x^{2}-4}$,
(b) $\int e^{-x} \cos 3 x d x$,
(c) $\int \frac{e^{x}}{\sqrt{1-e^{x}}} d x$.
7. Determine whether the definite integral $\int_{0}^{1} \frac{d x}{\ln (1+x)}$ exists. You do not need to find it.
8. Suppose that a sun is a spherical ball of radius R_{\odot}, whose mass density is radially symmetric and described by some function $\rho(r)$, where $r^{2}=x^{2}+y^{2}+z^{2}$. Let $M(a)$ be the total mass of the portion of the sun that is a concentric ball of radius a, where $0 \leq a \leq R_{\odot}$. If you know that $M(a)=C a^{5 / 2}$, where C is a constant, what is $\rho(r)$?
9. Find all the critical points of the function $u(x, y)=x^{3}+y^{2}-6 x y$ and classify them as maxima, minima or saddle.
10. What is the radius of convergence of the Taylor series of the function $f(x, y)=\frac{1}{1+\sin (x) \sin (y)}$ around the point $\left(x_{0}, y_{0}\right)=(0,0)$?
11. Let $\overrightarrow{\mathbf{u}}(x, y, z)=2 x e^{-z} \overrightarrow{\mathbf{i}}+2 y e^{-z} \overrightarrow{\mathbf{j}}-\left(x^{2}+y^{2}\right) e^{-z} \overrightarrow{\mathbf{k}}$. be the water velocity field around a cylindrical ocean coral of radius R, where z is measured from the ocean's bottom and $x=y=0$ is the coral's center.
(a) Show that $\overrightarrow{\mathbf{u}}$ is conservative and find its potential function, $\phi(x, y, z)$.
(b) Provide an integral for the work done by the water on an angelfish swimming around the bottom of the coral.
12. Let $\overrightarrow{\mathbf{H}}(x, y, z)=(x-y) \overrightarrow{\mathbf{i}}+(y-z) \overrightarrow{\mathbf{j}}+(z-x) \overrightarrow{\mathbf{k}}$ be the magnetic field in and around a spherical ball of radius R. Calculate the flux $\oiint_{S}(\overrightarrow{\mathbf{H}} \cdot \overrightarrow{\mathbf{n}}) d s$ on the ball's surface, where $\overrightarrow{\mathbf{n}}$ is the outward normal.
