Ph.D. Candidates Preliminary Exam: Linear Algebra
 UC Merced, January 2007

Directions: This examination lasts 4 hours.

1) Determine the rank of the following matrix:

$$
A=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right]
$$

2) Reduce the following matrix A to echelon form and use it to find all solutions of the system

$$
A x=\left[\begin{array}{llll}
1 & 0 & 2 & 3 \\
1 & 3 & 2 & 0 \\
2 & 0 & 4 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
5 \\
10
\end{array}\right]=b
$$

3) (a) Let V and W be vector spaces over F. Give the definition of a linear transformation $L: V \rightarrow W$.
(b) Define the null space of L and prove it is a subspace of V.
(c) Define the image of L - also called the range of L - and prove that it is a subspace of W.
4) For what values of a is the following matrix positive-definite:

$$
A=\left[\begin{array}{lll}
a & 2 & 2 \\
2 & a & 2 \\
2 & 2 & a
\end{array}\right]
$$

5) Suppose A is symmetric positive definite and Q is an orthogonal matrix. Determine whether the following statements are true or false:
(a) $Q^{T} A Q$ is a diagonal matrix,
(b) $Q^{T} A Q$ is symmetric positive definite,
(c) $Q^{T} A Q$ has the same eigenvalues as A,
(d) e^{-A} is symmetric positive definite.
6) If $u^{H} u=1$, show that $I-2 u u^{H}$ is Hermitian and also unitary. The rank-1 matrix $u u^{H}$ is the projection onto what line in C^{n} ?
7) Show that the vectors of the following basis

$$
x_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

are linearly independent and construct an equivalent orthogonal basis.
8) Find all values of α for which the following matrix is non-singular:

$$
\left[\begin{array}{ccc}
-2 & \alpha & 3 \\
1 & 2 & \alpha \\
1 & 11 & 18
\end{array}\right]
$$

9) Given $A=\left[\begin{array}{ccc}-3 & 2 & 1 \\ -7 & 6 & 5 \\ 2 & -2 & -2\end{array}\right]$, find a matrix P such that $D=P^{-1} A P$ is a diagonal matrix. What are the elements of the matrix D called?
10) Prove that similar matrices have the same characteristic polynomial and the same eigenvalues (A and B are called similar if there exist a non-singular matrix X such that $A=X^{-1} B X$).
11) Recall that projection matrices satisfy $P=P^{T}$ and $P^{2}=P$. Show that the eigenvalues of a projection matrix are either zero or one.
