Directions: This examination lasts 4 hours.

- Partial credit will be awarded to relevant work.
- No credit will be awarded for unexplained answers, correct or not.
- Computations mistakes will be very lightly penalized.
- Accurate graphic representation of a problem will receive high consideration.
- All questions are worth the same number of points.

1) Suppose A is diagonalizable and can be factored as $A=S \Lambda S^{-1}$ where the columns of S are the eigenvectors and Λ is the diagonal matrix of eigenvalues. Find the eigenvalues and eigenvectors of $A+2 I$ in terms of S and Λ.
2) Explain why a diagonalizable matrix is not necessarily invertible.
3) Show that any upper triangular matrix T that is unitary must be diagonal.
4) The singular value decomposition of a square matrix A is given as $A=U \Sigma V^{H}$ with unitary matrices U and V, and a diagonal matrix $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}\right)$. Show that the 2-norm of A defined as

$$
\|A\|_{2}=\max _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}
$$

is given by the maximum diagonal entry of Σ, i.e.

$$
\|A\|_{2}=\max _{1 \leq i \leq n} \sigma_{i} .
$$

5) Determine and sketch the location of all unit-norm vectors in \mathbb{R}^{2} where the norm is taken as the (a) 1-norm, (b) 2-norm and (c) ∞-norm.
6) If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is positive definite, test A^{-1} for positive definiteness.
7) Show that the vectors of the following basis

$$
x_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad x_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad x_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

are linearly independent and construct an equivalent orthogonal basis.
8) Let M be a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3}. Prove that M^{2} is a linear transformation also.
9) Find dimensions and bases for the four fundamental subspaces: column space, nullspace, row space and left nullspace for

$$
A=\left[\begin{array}{llll}
0 & 3 & 3 & 9 \\
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 3
\end{array}\right]
$$

10) A and B are diagonalizable matrices and satisfy $A B=B A$. Show that A and B have the same eigenvectors. Do they have the same eigenvalues?
