Applied Math Preliminary Exam: Linear Algebra
 UC Merced, January 2009

Directions: This examination lasts 4 hours.
Problem 1) For each of the following matrices determine whether there exists a similarity transformation with a unitary matrix U which can transform these matrices into diagonal form. Your answer must be fully justified, no credit will be given for "yes"/"no" answer.
(a)

$$
\left[\begin{array}{ccc}
2 & 3-3 i & i \\
3+3 i & 5 & 1 \\
-i & 1 & -3
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right]
$$

Problem 2) Given the system of equations:

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=b_{1} \\
x_{1}+2 x_{2}+4 x_{3}+6 x_{4}=b_{2} \\
x_{3}+2 x_{4}=b_{3},
\end{array}
$$

(a) find all possible values of b_{1}, b_{2}, b_{3} for which this system has solutions;
(b) find all possible solutions of this system if $b_{1}=0, b_{2}=1, b_{3}=-1$.

Problem 3) For which values of b the following matrix is positive-definite

$$
\left[\begin{array}{lll}
b & 3 & 0 \\
3 & b & 4 \\
0 & 4 & b
\end{array}\right]
$$

Problem 4) Does the system $A x=b$ with

$$
A=\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]
$$

have a solution? If the answer is "yes" find this solution, if the answer is "no" find \hat{x} such that the 2 -norm of the error is minimized, i.e. $\|A \hat{x}-b\|_{2}=\min _{x \in \mathbb{R}^{4}}\|A x-b\|_{2}$.
Problem 5) Given

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 1 & 0 \\
1 & -1 & 1
\end{array}\right]
$$

(a) Find $Q R$ factorization of matrix
(b) Determine an orthonormal basis which spans the column space of A.

Problem 6) Prove that all eigenvalues of a Hermitian matrix are real.
Problem 7) Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u_{1} and u_{2}. If its eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-2$, what are the matrices U, Σ and V^{T} that give singular-value decomposition of A ?

Problem 8) Explain whether or not the following matrices can be similar to each other (your answers must be justified, "yes"/"no" answers will not get any credit):
(a) a symmetric matrix and a non-symmetric matrix,
(b) an invertible matrix and a singular matrix,
(c) an arbitrary matrix and an upper-triangular matrix.

Problem 9) Show that if A is an orthogonal matrix then $\operatorname{det}(A)$ is either 1 or -1 .
Problem 10) Suppose that you know that matrix A with columns consisting of vectors v_{1}, v_{2}, v_{3} is invertible. Will a matrix with columns $w_{1}=v_{2}-v_{3}, w_{2}=v_{1}-v_{3}$ and $w_{3}=v_{1}-v_{2}$ be invertible? Justify your answer, no credit will be given for "yes"/"no" answer.

