Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2010

Instructions: This examination lasts 4 hours.

- Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation.
- Partial credit will be awarded to relevant work.

Problem 1. Given the system of linear equations

$$
\begin{aligned}
x_{1}-x_{2}+x_{3}+x_{4} & =b_{1} \\
-x_{1}+x_{2} & \\
-2 x_{1}+2 x_{2}-x_{3}-x_{4} & =b_{2}
\end{aligned}
$$

a. (5 points) find all possible values of b_{1}, b_{2}, and b_{3} for which this system has solutions;
b. (5 points) find all possible solutions of this system if $b_{1}=-10, b_{2}=8$, and $b_{3}=18$.

Problem 2. (10 points) Let $A \in \mathbb{R}^{4 \times 4}$ be a product of two matrices given by

$$
A=\left[\begin{array}{rrr}
1 & -1 & -2 \\
-1 & 1 & 2 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{rrrr}
3 & 2 & 1 & 0 \\
0 & 2 & 0 & 0 \\
-1 & 2 & 0 & 0
\end{array}\right]
$$

Find dimensions and bases for $\operatorname{Range}(A), \operatorname{Null}(A), \operatorname{Range}\left(A^{T}\right)$, and $\operatorname{Null}\left(A^{T}\right)$.

Problem 3. (10 points) Prove that if $A \in \mathbb{R}^{n \times n}$ is symmetric, positive definite, and orthogonal, then A must be the identity matrix. (Hint: Consider the eigenvalues of A.)

Problem 4. Let $x \in \mathbb{R}^{n}$ and $A=u v^{T}$ where $u, v \in \mathbb{R}^{n}$.
a. (5 points) Prove that $\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}$.
b. (5 points) Prove that $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$.

Problem 5. Let H be the Householder transformation given by

$$
H=I-\frac{2}{\|u\|_{2}^{2}} u u^{T}
$$

where $u \in \mathbb{R}^{n}$.
a. (5 points) Show that H is symmetric and orthogonal.
b. (5 points) Determine the eigenvalues and the corresponding eigenvectors of H.
c. (5 points) Let $x \in \mathbb{R}^{n}$ have unit length, i.e., $\|x\|_{2}=1$, and let e_{1} be the first column of the $n \times n$ identity matrix, i.e., $e_{1}=(1,0,0, \cdots, 0)^{T}$. Show that if $u=x-e_{1}$, then

$$
H x=e_{1} .
$$

Problem 6. Solve the least-squares problem

$$
\min _{x \in \mathbb{R}^{3}}\|A x-b\|_{2}
$$

where

$$
A=\left[\begin{array}{rr}
2 & 7 \\
-1 & -5 \\
-2 & -4
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{r}
-1 \\
5 \\
1
\end{array}\right]
$$

using
a. (5 points) the normal equation,
b. (10 points) the QR factorization.

Verify that your solutions agree.

Problem 7. Let $A \in \mathbb{R}^{m \times n}$ have rank n.
a. (5 points) Show that $P=A\left(A^{T} A\right)^{-1} A^{T}$ is a projection matrix.
b. (10 points) By considering the singular value decomposition of A, show that

$$
\left\|A\left(A^{T} A\right)^{-1} A^{T}\right\|_{2}=1
$$

Problem 8. Give an example for each of the following. Briefly explain why.
a. (3 points) A matrix that is positive definite but not symmetric.
b. (3 points) A non-diagonalizable matrix.

Problem 9. State whether each of the following statements is true or false. Briefly explain why.
a. (3 points) If $y \in \mathbb{R}^{n}$ is not in the null space of $A \in \mathbb{R}^{m \times n}$, then it must be in the range space of A^{T}.
b. (3 points) Any underdetermined linear system $A x=b$, where $A \in \mathbb{R}^{m \times n}$ with $m<n$ and $b \in \mathbb{R}^{m}$, has infinitely many solutions.
c. (3 points) If A is an invertible matrix, then the inverse of its transpose is the same as the transpose of its inverse, i.e.,

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

