Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2011

Instructions: This examination lasts 4 hours.

- Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation.
- Partial credit will be awarded to relevant work.

Problem 1. Let

$$
A=\left[\begin{array}{rrrr}
1 & -4 & 4 & 1 \\
2 & -1 & 3 & 0 \\
-3 & -2 & -2 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{r}
-2 \\
1 \\
-4
\end{array}\right]
$$

a. (5 points) Determine the rank of A.
b. (5 points) Find all solutions to the system $A x=b$, where $x \in \mathbb{R}^{4}$.
c. $\left(5\right.$ points) Find a basis for $\operatorname{Range}(A), \operatorname{Null}(A), \operatorname{Range}\left(A^{T}\right)$, and $\operatorname{Null}\left(A^{T}\right)$.
d. (5 points) Verify that $\operatorname{Range}(A)$ is orthogonal to $\operatorname{Null}\left(A^{T}\right)$, i.e., if $w \in \operatorname{Range}(A)$ and $v \in \operatorname{Null}\left(A^{T}\right)$, then $w \perp v$.

Problem 2. (10 points) Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 0 \\
1 & 1 & 1 \\
3 & -1 & 4
\end{array}\right]
$$

What are the eigenvalues and the corresponding eigenvectors of A ? Is A diagonalizable? Why or why not?

Problem 3. Let I be the $n \times n$ identity matrix, and let $u \in \mathbb{R}^{n}$ have unit norm, $\|u\|_{2}=1$.
a. (5 points) Show that $M=I-u u^{T}$ is a projection matrix.
b. (5 points) What are the eigenvalues and the corresponding eigenvectors of M ? Explain why.
c. (5 points) Onto which subspace of \mathbb{R}^{n} is M the projection? Explain why.

Problem 4. (10 points) Let $A \in \mathbb{R}^{n \times n}$ with the following singular value decomposition:

$$
A=U \Sigma V^{T}
$$

where the matrices U, Σ, and $V \in \mathbb{R}^{n \times n}$ where U and V are orthogonal and $\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}\right)$ with $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{m}^{2} \geq 0$. If A has rank $0<r<n$, what do the columns of U and V represent? Explain why.

Problem 5. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let x, y be vectors in \mathbb{R}^{n}.
(a) (5 points) Prove that if $\left(1+y^{T} A^{-1} x\right)=0$, then $\left(A+x y^{T}\right)$ is singular.
(b) (10 points) Prove that if $\left(1+y^{T} A^{-1} x\right) \neq 0$, then the inverse of $A+x y^{T}$ is given by

$$
\left(A+x y^{T}\right)^{-1}=A^{-1}-\frac{1}{1+y^{T} A^{-1} x} A^{-1} x y^{T} A^{-1}
$$

Problem 6. (10 points) Does the system $A x=b$ with

$$
A=\left[\begin{array}{ll}
7 & 3 \\
0 & 2 \\
4 & 1 \\
5 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{r}
4 \\
1 \\
-3 \\
2
\end{array}\right]
$$

have a solution? If the answer is "yes", find this solution. If not, find \hat{x} such that the 2-norm of the error is minimized, i.e., $\|A \hat{x}-b\|_{2}=\min _{x \in \mathbb{R}^{4}}\|A x-b\|_{2}$.

Problem 7. Short answers.
a. (5 points) Prove that a matrix $A \in \mathbb{R}^{n \times n}$ whose rows each sum to zero is singular.
b. (5 points) Show that the matrix

$$
B=\left[\begin{array}{rr}
1 & -5 \\
0 & 2
\end{array}\right]
$$

has positive eigenvalues but is not positive definite.
c. (5 points) On separate graphs, draw the following sets:
(a) $F=\left\{x \in \mathbb{R}^{2}:\|x\|_{1}=1\right\}$.
(b) $G=\left\{x \in \mathbb{R}^{2}:\|x\|_{2}=1\right\}$.
(c) $H=\left\{x \in \mathbb{R}^{2}:\|x\|_{\infty}=1\right\}$.
d. (5 points) For $x \in \mathbb{R}^{n}$, show that the operator $\|x\|_{0} \equiv\{\#$ of nonzeros in $x\}$ is not a norm.

