Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2019

Instructions: This examination lasts 4 hours. Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded to relevant work. There are 7 problems.

1. $(20 \mathrm{pts})$ Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

(a) Compute the singular value decomposition of A.
(b) Find the bases for the four fundamental subspaces $C(A), N\left(A^{T}\right), C\left(A^{T}\right)$, and $N(A)$ associated with A. Specify the rank and nullity of A.
2. (25 pts) A is a 3×3 matrix, and we know that

$$
A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-3 \\
-3
\end{array}\right], \quad A\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad A\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 \\
2 \\
-4
\end{array}\right] .
$$

(a) What are the eigenvalues and associated eigenvectors of A ? Can we use the set of eigenvectors as a basis for \mathbb{R}^{3} ? Why or why not? If yes, does this basis have any special properties?
(b) Calulate $A^{2019}\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$.
(c) Does the linear system $A \vec{x}=\vec{b}$ have a solution for any $\vec{b} \in \mathbb{R}^{3}$? If so, why? If not, for what kind of $\vec{b} \in \mathbb{R}^{3}$ is $A \vec{x}=\vec{b}$ solvable?
(d) Determine whether matrix A has the following properties. Explain your reasoning.
i. diagonalizable
ii. invertible
iii. orthogonal
iv. symmetric
3. (20 pts) You are a TA for a linear algebra class. An exam question asks students to solve a specific linear system

$$
A \vec{x}=\vec{b} .
$$

The answer key given by your instructor says that all solutions to the system should have the form

$$
\vec{x}=\left[\begin{array}{c}
-6 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

(a) A student wrote that all solutions to the system are

$$
\vec{x}=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right], \quad \text { with } t \text { being any real number. }
$$

Should you dock points from this student for incorrect answer? Explain why.
(b) Write down all properties of matrix A that you can deduce, such as its shape, rank, four fundamental subspaces, etc. Explain your reasoning.
(c) What can you deduce about \vec{b} ?
4. (10 pts) Suppose both matrices $A_{m \times n}$ and $B_{n \times s}$ have full column rank. Suppose furthermore that the range of $A B$ is the same as the range of A. What relations (e.g. $<, \geq,=$) must hold among the integers m, n, and s ? Carefully explain your reasoning and then give an example that illustrates your conclusions.
5. (15 pts) Let \mathbb{P}_{k} denote the vector space of all polynomial of degrees k or less. Define a subset S of \mathbb{P}_{2} to be

$$
S=\left\{f \in \mathbb{P}_{2}: \int_{0}^{1} f(x) d x=\int_{0}^{1} f^{\prime}(x) d x\right\} .
$$

Show that S is a linear subspace of \mathbb{P}_{2}. Determine its dimension and find a basis for S.
6. (15 pts) Let $\mathfrak{M}_{2 \times 2}$ be the vector space of all 2-by- 2 matrices. Let T be the transformation on $\mathfrak{M}_{2 \times 2}$ that transposes every 2×2 matrix. That is, $T(A)=A^{T}$.

$$
T: \mathfrak{M}_{2 \times 2} \rightarrow \mathfrak{M}_{2 \times 2}, T(A)=A^{T} \text { for every } A \in \mathfrak{M}_{2 \times 2}
$$

(a) Show that T is a linear transformation.
(b) Determine all the eigenvalues of T and specify their associated eigenvectors (really, eigenmatrices).
7. (15 pts) Let $A_{m \times n}$ be a real matrix.
(a) Show that $A^{T} A$ is symmetric.
(b) Show that $A^{T} A$ is positive semi-definite.
(c) Under what condition on A is $A^{T} A$ positive definite? Explain.

