Applied Math Preliminary Exam: Linear Algebra
University of California, Merced, May 2019

Instructions: This examination lasts 4 hours. Show explicitly steps and computations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded to relevant work. There are 8 problems, for a total of 100 points.

1. (15 pts: 3 each) For each of the following statements, either give a specific example, briefly justified, or explain why no such example can exist.

 (a) A 2-by-3 matrix A in echelon form whose columns span \mathbb{R}^2.

 (b) Nonzero vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^2 such that \vec{w} is not in $\text{span}\{\vec{u}, \vec{v}\}$.

 (c) A linear system with two equations and three variables but does not have any solutions.

 (d) A 3-by-3 non-zero matrix B such that the vector \[
 \begin{bmatrix}
 1 \\
 1 \\
 1
 \end{bmatrix}
 \]
 is a solution of $B\vec{x} = \vec{0}$.

 (e) A matrix C (of any size you want) and a vector \vec{b} for which the solution set of $C\vec{x} = \vec{b}$ is a plane.

2. (10 pts: 5 each) Consider the system of equations
 \[
 \begin{align*}
 x + 2y + 3z + 4t &= b_1 \\
 x + 2y + 4z + 6t &= b_2 \\
 z + 2t &= b_3.
 \end{align*}
 \]

 (a) For what values of b_1, b_2, and b_3 does this system have a solution?

 (b) Find all solutions to this system for $b_1 = 0$, $b_2 = 1$, and $b_3 = 1$.

3. (10 pts: 5 each) Calculate e^A where
 \[
 A = \begin{bmatrix}
 2 & 0 & 1 \\
 0 & -1 & 0 \\
 1 & 0 & 2
 \end{bmatrix}
 \]

4. (10 pts: 5 each)

 (a) Let W denote the vector space of all functions of x which can be differentiated infinitely many times. Explain why differentiation, $\frac{d}{dx}: W \to W$, is a linear transformation.

 (b) Let V be a subspace of W with the following basis
 \[\{\sin x, \cos x, \sin 2x, \cos 2x\} \, . \]

 Find the matrix representing $\frac{d}{dx} : V \to V$ with respect to the above basis.
5. (15 pts: 3 each) Decide whether each of the statements below are true or false. If true, explain why. If false, provide a counterexample or correct the statement.

(a) The linear span in \mathbb{R}^3 of \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \) consists of two straight lines.

(b) A is a given $m \times n$ matrix. Define S to be the set of all $\vec{b} \in \mathbb{R}^m$ such that $A\vec{x} = \vec{b}$ has a solution $\vec{x} \in \mathbb{R}^n$. In notation, $$S = \{ \vec{b} \in \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ is solvable} \}$$

Then S is a vector subspace of \mathbb{R}^m.

(c) If A is an $n \times n$ diagonalizable matrix, then 0 cannot be an eigenvalue of A.

(d) If Q is an orthogonal matrix, then $\det Q = 1$.

(e) Let V be a vector subspace of \mathbb{R}^n and V^\perp denotes its orthogonal complement. Then every vector $\vec{x} \in \mathbb{R}^n$ must either belong to V or V^\perp. That is, either $\vec{x} \in V$ or $\vec{x} \in V^\perp$.

6. (16 pts: 4 each) Let A be an $m \times n$ matrix with rank r. List all that you can say about

(i) the values of m, n, and r, and

(ii) the columns of A

in each of the following cases.

(a) Depending on \vec{b}, $A\vec{x} = \vec{b}$ either has no solutions or only 1 solution.

(b) For any \vec{b}, $A\vec{x} = \vec{b}$ always has infinitely many solutions.

(c) Depending on \vec{b}, $A\vec{x} = \vec{b}$ either has no solutions or infinitely many solutions.

(d) For any \vec{b}, $A\vec{x} = \vec{b}$ always has exactly 1 solution.

7. (15 pts: 5 each) Let \vec{x}, \vec{y} be nonzero vectors in \mathbb{R}^n, $n \geq 2$, and let $A = \vec{x}\vec{y}^T$. Show that

(a) $\lambda = 0$ is an eigenvalue of A with $n - 1$ linearly independent eigenvectors and consequently has multiplicity at least $n - 1$.

(b) The remaining eigenvalue of A is

$$\lambda_n = \text{tr } A = \vec{x}^T \vec{y}$$

and \vec{x} is an eigenvector belonging to λ_n.

(c) If $\lambda_n = \vec{x}^T \vec{y} \neq 0$, then A is diagonalizable.

8. (9 pts: 5, 4) Let \vec{u} be a real vector with length 1, i.e., $\vec{u}^T \vec{u} = 1$.

(a) Show that $P = \vec{u}\vec{u}^T$ is a projection matrix. Recall that a projection matrix is one that satisfies $P^2 = P$ and $P^T = P$.

(b) Show that $T = I - 2P = I - 2\vec{u}\vec{u}^T$ is both symmetric and orthogonal.