Applied Math Preliminary Exam: Linear Algebra

University of California, Merced, January 2020
Instructions: This examination lasts 4 hours. Each problem is worth 15 points. While there are 10 problems, your total score will be calculated by adding up your 8 highest scores. Hence, the maximum total score is $8 \times 15=120$ points. Show explicitly the steps and calculations in your solutions. Credit will not be given to answers without explanation. Partial credit will be awarded for relevant work.

1. Suppose that a 3×3 matrix A satisfies

$$
A\left[\begin{array}{l}
0 \tag{1}\\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad A\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right] .
$$

(a) Explain why A can be uniquely determined by (1).
(b) Determine the matrix A.
2. Consider the linear system $A \mathbf{x}=\mathbf{b}$ where

$$
A=\left[\begin{array}{cc}
2 & 7 \tag{2}\\
-1 & -5 \\
-2 & -4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]
$$

(a) Show that the system does not have a solution.
(b) Define the least-squares solution \mathbf{x}^{*} using the 2-norm (or Euclidean norm) $\|\cdot\|_{2}$.
(c) Compute \mathbf{x}^{*}.
3. (a) Find the eigenvalues and associated eigenvectors $\left(\lambda_{1}, \mathbf{v}_{1}\right),\left(\lambda_{2}, \mathbf{v}_{2}\right)$, and $\left(\lambda_{3}, \mathbf{v}_{3}\right)$ of B such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ forms an orthonormal basis for \mathbb{R}^{3}, where

$$
B=\left[\begin{array}{lll}
1 & 1 & 1 \tag{3}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

(b) Using the result of (a), diagonalize B.
(c) Using the result of (b), show that $B^{2020}=3^{2019} B$.
4. (a) Find the following decomposition:

$$
A=\left[\begin{array}{ccc}
4 & -2 & 2 \tag{4}\\
-2 & 10 & 5 \\
2 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & 0 & 0 \\
r_{12} & r_{22} & 0 \\
r_{13} & r_{23} & r_{33}
\end{array}\right]\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right]=R^{T} R,
$$

where $r_{11}>0, r_{22}>0$, and $r_{33}>0$.
(b) Show that $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$.
5. Suppose that the matrix A has the following decomposition:

$$
A=\left[\begin{array}{cccc}
-0.22 & -0.79 & 0.42 & 0.40 \tag{5}\\
-0.28 & 0.50 & 0.82 & -0.02 \\
-0.50 & -0.28 & -0.02 & -0.82 \\
-0.79 & 0.22 & -0.40 & 0.42
\end{array}\right]\left[\begin{array}{ccc}
6.44 & 0 & 0 \\
0 & 2.55 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
-0.97 & -0.10 & -0.23 \\
0.18 & -0.93 & -0.33 \\
-0.18 & -0.37 & 0.91
\end{array}\right] .
$$

Briefly answer the following questions:
(a) What are the size and rank of A ?
(b) What are the eigenvalues of $A^{T} A$ and $A A^{T}$?
(c) Write down a basis for the null space of A.
(d) Write down a basis for the null space of A^{T}.
(e) Write down a basis for the range of A.
(f) Write down a basis for the range of A^{T}.
6. Denote the set of all polynomial functions of degree 2 or less by \mathcal{P}_{2}.
(a) Briefly explain why \mathcal{P}_{2} is a linear space.
(b) For the inner product

$$
\begin{equation*}
(p, q)=\int_{-1}^{1} p(x) q(x) d x \tag{6}
\end{equation*}
$$

show that $p_{0}(x)=\frac{1}{\sqrt{2}}$ and $p_{1}(x)=\sqrt{\frac{3}{2}} x$ are orthonormal.
(c) By performing the Gram-Schmidt process starting from the basis $\left\{p_{0}(x), p_{1}(x), x^{2}\right\}$, find an orthonormal basis of \mathcal{P}_{2}.
7. (a) Show that the following identity holds for $k=1,2, \ldots$:

$$
\begin{equation*}
\left(I+B+B^{2}+\cdots+B^{k-1}\right)(I-B)=I-B^{k} \tag{7}
\end{equation*}
$$

(b) Assuming its convergence, compute the geometric series $\sum_{k=0}^{\infty} B^{k}=I+B+B^{2}+\cdots$ for

$$
B=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{3} \tag{8}\\
\frac{1}{3} & \frac{1}{2}
\end{array}\right] .
$$

(c) State when the geometric series of a matrix converges.
8. Let $A, B \in \mathbb{R}^{n \times n}$ and $\mathbf{x} \in \mathbb{R}^{n}$.
(a) Define the matrix p-norm $\|A\|_{p}$ induced by the vector p-norm $\|\mathrm{x}\|_{p}$.
(b) Using the definition you stated in (a), prove that $\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p}$.
(c) Show that $\|A\|_{p}\left\|A^{-1}\right\|_{p} \geq 1$.
9. Consider the following iteration:

$$
\mathbf{x}^{(k+1)}=\left[\begin{array}{cc}
0 & -\frac{1}{3} \tag{9}\\
-\frac{2}{5} & 0
\end{array}\right] \mathbf{x}^{(k)}+\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{1}{5}
\end{array}\right], \quad k=0,1,2, \ldots
$$

(a) Assuming that the iteration converges, compute the convergent solution \mathbf{x}^{*}.
(b) Derive a recurrence relation for the error vector $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}^{*}$.
(c) Explain why this iteration converges.
10. You are a TA for a linear algebra class. An exam question asks students to solve a specific linear system $A \mathbf{x}=\mathbf{b}$. The answer key given by your instructor says that all solutions to the system should have the form

$$
\mathbf{x}=\left[\begin{array}{c}
-6 \tag{10}\\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad s, t \in \mathbb{R} .
$$

(a) A student wrote that all solutions to the system are

$$
\mathbf{x}=\left[\begin{array}{c}
-2 \tag{11}\\
-1 \\
2
\end{array}\right]+s\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { with } s \text { and } t \text { being any real numbers. }
$$

Should you deduct points from this student for giving an incorrect answer? Explain why or why not.
(b) Write down all properties of matrix A that you can deduce, such as its size, rank, the dimensions of the four fundamental subspaces, etc.

