1. (9 points -3 points each) Answer each of the following:
(a) Suppose you happen to know that

$$
(m-1)(m-2)(m-3)(m-4)=m^{4}-10 m^{3}+35 m^{2}-50 m+24 .
$$

Find the general solution of $y^{\prime \prime \prime \prime}-10 y^{\prime \prime \prime}+35 y^{\prime \prime}-50 y^{\prime}+24 y=0$.
(b) For the differential equation $\frac{d y}{d t}=\exp \left(y^{2}\right)-1$, find the equilibrium solution and determine its stability.
(c) Sketch the phase-plane $\left(y^{\prime}(t)\right.$ vs. $\left.y(t)\right)$ trajectory for the differential equation $y^{\prime \prime}-4 y=0$ with $y(0)=1$ and $y^{\prime}(0)=1$.
2. (18 points -6 points each) Find the solutions to the following initial-value problems:
(a) $x^{2} \frac{d y}{d x}=x y-y^{2}, \quad y(1)=1, \quad$ hint: use transformation $y=u x$
(b) $\frac{d y}{d x}+(\tan x) y=\sec x, \quad y(0)=4$
(c) $\frac{x}{y^{2}} \frac{d y}{d x}=1+\frac{1}{y}, \quad y(1)=\frac{1}{2}$
3. (10 points) Consider the first-order equation

$$
\frac{d x}{d t}+x=f(t)
$$

(a) Solve the equation for $x(t)$, assuming only that $f(t)$ is continuous.
(b) Find a function $f(t)$ such that $f(t)>0$ for all t, and regardless of the initial condition $x(0)$, all solutions $x(t)$ of the first-order equation satisfy

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

Be sure to include relevant details that explain why your function $f(t)$ works.
4. (18 points) Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+y=\sin (\alpha x) \tag{1}
\end{equation*}
$$

where α is a positive real number.
(a) Write down two linearly independent solutions to the homogeneous problem. How do you know they are linearly independent?
(b) Assuming $\alpha \neq 1$, find the general solution $y_{\alpha}(x)$ of (1).
(c) Return to (1), set $\alpha=1$, and find the general solution $y_{1}(x)$.
(d) True/False: in the $\alpha \rightarrow 1$ limit, $y_{\alpha}(x)$ approaches $y_{1}(x)$.
5. (15 points) Consider the boundary-value problem

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0 .
$$

(a) Find the eigenvalues λ_{n} and the linearly independent eigenfunctions $y_{n}(x)$. Number the eigenvalues/eigenfunctions so that the smallest eigenvalue corresponds to $n=0$.
(b) Sketch the first four eigenfunctions for $x \in[0, \pi]$.
(c) Consider the function

$$
f(x)= \begin{cases}1 & 0 \leq x<\pi / 2 \\ -1 & \pi / 2 \leq x \leq \pi\end{cases}
$$

Show that if n is even,

$$
\int_{0}^{\pi} f(x) y_{n}(x) d x=0
$$

Relate this result to symmetries and/or antisymmetries of $f(x)$ and $y_{n}(x)$.
6. (15 points) Consider the equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+x-x^{3}=0 . \tag{2}
\end{equation*}
$$

(a) Rewrite the second-order equation (2) as a first-order system

$$
\frac{d}{d t}\binom{x}{y}=\binom{y}{f(x)},
$$

where $f(x)$ is a function you must determine.
(b) Linearize the first-order system about the equilibrium solutions $(\pm 1,0)$. Your result should be a 2×2 matrix A.
(c) From the linearization, determine the stability of the equilibrium solutions $(\pm 1,0)$.
(d) How, if at all, do the results of the previous parts change if the $-x^{3}$ term in (2) is replaced by $-x^{2 n+1}$ where n is any positive integer?
7. (15 points - 5 points each) For each choice of the matrix A, find the general solution of

$$
\frac{d}{d t} \mathbf{v}(t)=A \mathbf{v}, \quad \mathbf{v}(0)=\mathbf{z}
$$

(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(c) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

