Instructions: Credit will be awarded mainly based on the quality of your work and the clarity of your explanations.

1. Solve each of the following initial value problems.
(a) $y^{\prime}=x y^{3}\left(1+x^{2}\right)^{-1 / 2}, \quad y(0)=1$.
(b) $y^{\prime}=e^{2 x}+y-1, \quad y(0)=0$.
(c) $y^{\prime \prime}+4 y=3 \sin 2 x, \quad y(0)=2, \quad y^{\prime}(0)=1$.
2. Consider the ODE

$$
\dot{y}=e^{-y} \sin y .
$$

(a) What are the fixed/equilibrium points?
(b) Determine the stability of the fixed/equilibrium points.
(c) What is $\lim _{t \rightarrow \infty} y(t)$ if $y(0)=4$?
3. For the system

$$
\begin{aligned}
& \dot{x}=\sin y, \\
& \dot{y}=x-x^{3},
\end{aligned}
$$

find the fixed/equilibrium points and classify their stability structure.
4. Consider the eigenvalue problem with Robin boundary conditions at both ends:

$$
\begin{gathered}
v^{\prime \prime}+\lambda v=0, \\
v^{\prime}(0)-a_{0} v(0)=0, \quad v^{\prime}(l)+a_{l} v(l)=0 .
\end{gathered}
$$

(a) Show that $\lambda=0$ is an eigenvalue if and only if $a_{0}+a_{l}=-a_{0} a_{l} l$.
(b) Find the eigenfunctions corresponding to the zero eigenvalue.
5. For the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0,
$$

(a) Verify that $y_{1}(x)=x$ is a solution;
(b) Find a second, linearly independent solution y_{2} using variation of parameters, i.e. seek a second solution of the form $y_{2}(x)=C(x) y_{1}(x)$;
(c) Use variation of parameters again with your results from above to solve the non-homogeneous problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=\frac{1}{1-x} .
$$

(Hint: Seek a solution in the form $y=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x)$.)
6. Find the general solution of

$$
\left(1+x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

by considering an expansion about $x=0$.

