Duration: 240 minutes

Answer all questions. Partial credit will be awarded to correct, but partial work. Points will be deducted for non-sensical answers. This test is meant to be difficult, so you are not expected to be able to answer every question perfectly.

1. Consider the initial-value problem $y^{\prime}+P(x) y=x, y(0)=1$, where

$$
P(x)= \begin{cases}1 & 0 \leq x \leq 2 \\ 3 & x>2\end{cases}
$$

(a) Comment on the existence and uniqueness of solutions for this initial-value problem.
(b) Find a reasonable solution to this problem, i.e. one that is continuous for $x \in[0, \infty)$.
(c) Sketch the graph of this solution.
2. Solve $y^{\prime}=\exp \left(x^{2}\right) / y^{2}$ with initial condition $y(0)=1$.
3. Solve $y^{\prime \prime}-y^{\prime}-2 y=\cos x-\sin 2 x$ with initial conditions $y(0)=-7 / 20$, and $y^{\prime}(0)=1 / 5$.
4. Solve $y^{\prime \prime \prime}+y^{\prime}=0$ with initial conditions $y(0)=0, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=2$.
5. A generalized Ricatti equation takes the form $y^{\prime}=P(x) y^{2}+Q(x) y+R(x)$.
(a) Suppose $y=u(x)$ is a solution of this equation. Show that $y=u+1 / v$ reduces the generalized Ricatti equation to a linear equation in v.
(b) Given that $u(x)=x$ is a solution of $y^{\prime}=x^{3}(y-x)^{2}+y / x$, use your result from part (a) to find all other solutions to this equation.
6. Consider the van der Pol oscillator governed by the equation

$$
\ddot{x}+\epsilon\left(x^{2}-1\right) \dot{x}+x=0 .
$$

(a) Determine how the stability of the zero solution depends on the non-negative parameter, ϵ.
(b) If a pendulum is governed by this equation, apply your stability result from (b) to describe the behavior of this pendulum.
7. The equation $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$ is said to be exactif it can be written in the form $\left[P(x) y^{\prime}\right]^{\prime}+$ $[f(x) y]^{\prime}=0$, where $f(x)$ is to be determined in terms of $P(x), Q(x)$, and $R(x)$. Find the necessary condition for exactness and then give the method of solution.
8. Locate and classify the singular points of the following differential equations.
(a) $(x-1) y^{\prime \prime}+\sqrt{x} y=0, x \geq 0$.
(b) $y^{\prime \prime}+y^{\prime} \log x+x y=0, x \geq 0$.
(c) $x y^{\prime \prime}+y \sin x=0$.
(d) $\left(x^{2}-x\right) y^{\prime \prime}+x y^{\prime}+7 y=0$.
9. Find two linearly independent solutions of $x y^{\prime \prime}+(1+x) y^{\prime}+2 y=0$, valid near $x=0$. It is sufficient to obtain the first three nonvanishing terms in the infinite series.
10. Find all eigenvalues and eigenfunctions for the Sturm-Liouville problem

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\lambda y=0, \quad y(1)=y(b)=0, \quad b>1 .
$$

