Instructions: Show all your work. Credit will awarded largely for the quality of your work and the clarity of your explanations.

1. (18 points) Answer each of the following questions.
(a) Find the general solution of the ODE

$$
y^{\prime}-\tan (x) y=\sin (x) .
$$

(b) Solve the IVP

$$
y^{\prime}=-\sqrt{1-y^{2}}, \quad y(0)=1 .
$$

(c) Let $g(t) \in C^{1}$ and let $y(t)$ satisfy the integral equation

$$
y(t)=e^{g(t)}+\int_{0}^{t} g^{\prime}(s) y(s) d s
$$

Convert this equation into an IVP for $y(t)$ and solve it.
2. (15 points) According to Aphrodite's Law, World Love grows as

$$
\frac{d L}{d t}=\bigcirc(A-L),
$$

where t is in Heavenly Days, the constant A is the Ambient Love, and \bigcirc is the Holy Coefficient. On the first day, World Love is 0 . By the sixth day, Adam and Eve have been created; and World Love is 1 . On the eleventh day, Adam and Eve discover that World Love is $1+\epsilon$, where $\epsilon \in(0,1)$.
(a) What is the Holy Coefficient \triangle ?
(b) What does World Love approach at $t \rightarrow \infty$?
(c) What can you conclude from this story if $\epsilon=1$?
3. (15 points) Solve the IVP

$$
y^{\prime \prime}+\omega^{2} y=\cos (\omega t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

where $\omega_{0}>0$.
4. (15 points) Find the general solution of system of ODEs

$$
\dot{\mathbf{x}}(t)=A \mathbf{x}(t)+\mathbf{b}, \quad A=\left[\begin{array}{rr}
3 & 3 \tag{1}\\
-8 & 13
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

5. (15 points) Consider the nonlinear ODE

$$
y^{\prime \prime}+\left(1-y^{2}\right) y^{\prime}+y=0 .
$$

(a) Find the equilibrium solutions (fixed points).
(b) Linearize the ODE around an equilibrium solution and classify its type of linear (in)stability, i.e., its phase portrait in the $\left(y, y^{\prime}\right)$ plane.
(c) Let $E(t)=y^{2}(t)+y^{\prime 2}(t)$. Show that if $E(0)<1$ then $E(t)<1$ for all $t>0$.
6. (15 points) Consider the ODE

$$
x(1-x) y^{\prime \prime}-2(1-2 x) y^{\prime}-6 y=0 .
$$

(a) Classify the type of singularity at $x=0$.
(b) Use Frobenius' method to determine the indicial equation and the recurrence relation for a power series solution around $x=0$.
(c) Obtain a polynomial solution.
7. (15 points) Consider the eigenvalue problem

$$
y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0 .
$$

(a) Find the eigenvalues and corresponding eigenfunctions.
(b) If $\lambda=\lambda_{n}$ is one of the eigenvalues, what is the condition on a function $f(x)$ for the IVP

$$
y^{\prime \prime}+\lambda_{n} y=f(x), \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0
$$

to have a bounded solution?

GOOD LUCK!

