- On the front of your blue book print (1) your name, (2) your student ID number, (3) your discussion section number, and (4) a grading table.
- Show all work in your blue book and BOX IN YOUR FINAL ANSWERS where appropriate.
- Please start each problem on a new page. There are a total of seven problems on both sides of this paper and a total of 100 points.
- NO books, notes, crib sheets, calculators or any other electronic devices are allowed.

Only the final answer will be graded for problem 1. No justification is needed.

1. (20 points, 4 points each) Determine whether the following statements are TRUE or FALSE. Write out the whole word "TRUE" or "FALSE" for each problem.
(a) $\frac{\mathrm{d}}{\mathrm{d} x}\left(2^{\sin (x)}\right)=\sin (x) 2^{\sin (x)-1} \cos (x)$
(b) The function $\cos (x)$ has all real numbers as domain and $[-1,1]$ as range, so its inverse function $\arccos (x)$ has $[-1,1]$ as domain and all real numbers as range.
(c) $\frac{\mathrm{d}}{\mathrm{d} x}\left[\cosh ^{2}(\sqrt{x})-\sinh ^{2}(\sqrt{x})\right]=0$.
(d) $\sin (\arctan (x))=\frac{x}{\sqrt{1-x^{2}}}$.
(e) If $f^{\prime}(x)$ is defined for all x and f has a maximum at $x=1$, then $f^{\prime}(1)=0$.

Show your reasoning clearly for problems 2-7. A correct answer with no supporting work may receive no credit while an incorrect answer with some correct work may receive partial credit.
2. (24 points: 8 points each) Find the derivative of the following functions with respect to x.
(a) $\frac{x-6}{x+7}$
(b) $\left(1+x^{2}\right) \arcsin (x)$
(c) $\tan (\ln (1-x))$
3. (9 points) Find the tangent line approximation to $\sqrt{1+x}$ at $x=0$. Use this approximation to estimate $\sqrt{1.02}$.
4. (9 points) The part of the graph of

$$
\sin \left(x^{2}+y\right)=x
$$

that is near $(0, \pi)$ defines y as a function of x implicitly. Is this function increasing or decreasing near $x=0$? Explain how you know.
5. (7 points) Using the definition of the derivative, show that $\frac{\mathrm{d}}{\mathrm{d} x} \cos (x)=-\sin (x)$. You may need to use the following limits:

$$
\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1 \quad \text { and } \quad \lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}=0
$$

6. (9 points: 4,5$)$
(a) Carefully state the Constant Function Theorem.
(b) Suppose that $f(x)$ is differentiable for all x and that $f^{\prime}(x) \leq 3$. If $f(0)=4$, what can you say about the value of $f(2)$? Specify which theorem you are using.
7. (22 points total) Consider the function

$$
f(x)=x^{4}-4 x^{3} .
$$

Questions (a)-(f) will help you sketch the graph of $f(x)$.
(a) (1 point) What is the domain of f ?
(b) (3 points) Is f even, odd, or neither? Why?
(c) (5 points) Find $f^{\prime}(x)$. On what interval(s) is f increasing? decreasing? Where are the local max/min points and what are the local max/min values?
(d) (5 points) Find $f^{\prime \prime}(x)$. On what interval(s) is f concave up? concave down? Are there any inflection points? If there are, what are their coordinates?
(e) (3 points) What are the x - and y-intercepts?
(f) (2 points) What are the limits $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$?
(g) (3 points) Sketch the graph of f. Make sure that it reflects your answers to all previous parts and mark the points from parts (c), (d) and (e) on your graph.

