Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100 .

1. (20 points: 10 points each) Compute the derivative of the following functions.
(a) $\sqrt{x^{2}+1}$
(b) $\sin \left(x^{2}\right) \cos x$
2. (20 points) Let $g(x)=x^{3}-2 x+1$.
(a) (8 points) Find the slope of the tangent line of $y=g(x)$ passing through the point $P(2,5)$.
(b) (7 points) Find the equation for the tangent line whose slope you found in (a). (If you cannot solve part (a), pretend that the answer is -1000 .)
(c) (5 points) Where does the line found in (b) intersect the x-axis?
3. (20 points: 10 each) Find the following limits if they exist, either as numbers or $\pm \infty$. If a limit does not exist, explain why not.
(a) $\lim _{x \rightarrow 5^{-}} \frac{x^{2}-4 x-5}{x^{2}-3 x-10}$
(b) $\lim _{x \rightarrow 4^{+}} \frac{x+4}{x-4}$
4. (20 points) Consider the following piecewise defined function:

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}
$$

(a) (12 points) Use the definition of the derivative to find $f^{\prime}(0)$.
(b) (8 points) Is $f(x)$ continuous on $(-\infty,+\infty)$? Explain your reasoning.
5. (20 points)

Carefully sketch the derivative of $h(x)$ on $0 \leq x \leq 4$ given graph of $h(x)$ to the left. Be sure that your coordinate axes are correctly labeled.

