Exam \# 2. Solution

1.

a) A car drives non-stop 400 mi in 5 hours on I- 5 where the speed limit is 70 mph . After hearing this story a policeman can justify giving the driver a speeding ticket since the cars.

This is True. According to the Mean Value Thm if $f(x)$ is continuous on an interval then somewhere in the interval the instantaneous rate equals to the average rate. In this problem $f(x)$ is the displacement of the car and velocity is the rate.
b) If $f^{\prime}(x)=x \cos (x)+\sin (x)$ then $f(x)=x \sin (x)+2 x$ is a particular antiderivative.

This is False. $f(x)=x \sin (x)+2$ is a particular antiderivative. You can check it by taking a derivative of $x \sin (x)$
c) If $f^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime}(\mathrm{c})<0$ then f has absolute maximum at c .

This is False. f has a local maximum at c.

d) Finding a number c where $f^{\prime}(c)=0$ guarantees that there is a local min or max at c.

This is False. $f^{\prime}(c)=0$ doesn't guarantee local max or min. Derivative of $y=x^{3}$ at x $=0$ is a good example, (see Figure 9 on page 208).
e) If a smile is described by the function $f(x)$ on $[a ; b]$ then $f^{\prime \prime}(x)>0$ on (a; b).

This is True. A smile concaves up on interval (a, b) and this is precisely what $f^{\prime \prime}(x)>0$ on (a, b) means. .
2. If a ball is thrown vertically upward, then its velocity after t seconds is given by $\mathrm{v}(\mathrm{t})=200-20 \mathrm{t}(\mathrm{ft} / \mathrm{sec})$. What is the height reached by the ball after 10 sec if the initial height is $s(0)=0$?

To find height $s(t)$ take the antiderivative of $v(t) . s(t)=200 t-10 t^{2}+c$. Since $s(0)=$ 0 constant $c=0$. After 10 sec .
$s(10)=2000-1000=1000 \mathrm{ft}$.
3. Function $y=\frac{100 t}{t^{2}+25}$ describes fish population in a pond where t is the number of years $(t \geq 0)$.
a) To find what will happen to fish population after a long time take the limit as time approaches infinity.
$\lim _{t \rightarrow \infty} y=\frac{100 t}{t^{2}+25}=\frac{\frac{100}{t}}{1+\frac{25}{t^{2}}}=\frac{0}{1}=0$ (Divide numerator and denominator by t^{2})
The fish population will become extinct.
b) To find the maximum population, find critical t where $\mathrm{y}^{\prime}=0$ and check for maximum.

Use the quotient rule to take derivative. Since the denominator $\left(\mathrm{t}^{2}+25\right)^{2}$ is never zero an
$\frac{d y}{d t}=\frac{100\left(t^{2}+25\right)-100 t(2 t)}{\left(t^{2}+25\right)^{2}}=\frac{2500-100 t^{2}}{\left(t^{2}+25\right)^{2}}=0$

Since the denominator $\left(\mathrm{t}^{2}+25\right)^{2}$ is never zero, we can set the numerator equal to zero.
$2500-100 t^{2}=0$
$t=5 \mathrm{yrs}$
Since the domain $t>0$ we only need the positive root.
Now we must check for maximum. For that choose t to the right and to the left of $t=5$.
When $\mathrm{t}=4, \frac{d y}{d t}=.5>0$
When $\mathrm{t}=6, \frac{d y}{d t}=-.295<0$

According to I/D test at $t=5$ yrs we have an absolute maximum $y^{\prime}>0$ on interval $[0,5)$ and $y^{\prime}<0$ on interval $(5, \infty)$

To find the maximum population calculate fish population at $\mathrm{t}=5$,
$y(5)=10$ fish
4. Calculate y^{\prime} if $x^{4}=x+3 y$.

Take derivative with respect to x of the entire equation. You need to use the product rule on the $x y^{4}$ term.
$x\left(4 y^{3} \frac{d y}{d x}\right)+\frac{d x}{d x} y^{4}=\frac{d x}{d x}+3 \frac{d y}{d x}$
$4 y^{3} x \frac{d y}{d x}+y^{4}=1+3 \frac{d y}{d x}$
Move dy/dx terms to the left and all other terms to the right.
$4 y^{3} x \frac{d y}{d x}-3 \frac{d y}{d x}=1-y^{4}$
Factor out $d y / d x$ and then solve for $d y / d x$
$\frac{d y}{d x}\left(4 y^{3} x-3\right)=1-y^{4}$
$\frac{d y}{d x}=\frac{1-y^{4}}{4 y^{3} x-3}$
5. The area of a square is increasing at a rate of $10 \mathrm{~cm}^{2} / \mathrm{min}$. How fast is the perimeter increasing when the length of the side is 4 cm ?

Area of the square is $A=x^{2}$ where x is the length of a side.
Perimeter on the square is $P=x+x+x+x=4 x$ or $x=P / 4$
Substitute $\mathrm{x}=\mathrm{P} / 4$ into the expression for the area
$\mathrm{A}=\mathrm{P}^{2} / 16$
Now take time derivative of the entire equation
$\frac{d A}{d t}=\frac{2 P}{16} \frac{d P}{d t}$

Solve for $\mathrm{dP} / \mathrm{dt}$. When $\mathrm{x}=4 \mathrm{~cm}, \mathrm{P}=16 \mathrm{~cm}$

$$
\frac{d P}{d t}=\frac{8}{P} \frac{d A}{d t}=\frac{8}{16} 10=5 \frac{\mathrm{~cm}}{\mathrm{sec}}
$$

