SOLUTIONS FOR MATH 22 EXAM 3

1. Express the arclength of the curve $y=e^{x}, 0 \leq x \leq 1$ as an integral. You do not need to evaluate the integral.

Solution: The general formula for the arclength of a graph with equation $y=f(x)$ with x-range $a \leq x \leq b$ is given by

$$
\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

So in this case, our solution is

$$
\int_{0}^{1} \sqrt{1+e^{2 x}} d x
$$

2. Find the area of the surface generated by rotating the curve in Problem \#1 around the x-axis.

Solution: The general formula for the area of the surface resulting from rotating the curve $y=f(x), a \leq x \leq b$ around the x-axis is given by

$$
\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

In our case, with $y=e^{x}, 0 \leq x \leq 1$, this becomes

$$
\int_{0}^{1} 2 \pi e^{x} \sqrt{1+e^{2 x}} d x
$$

I think that the best choice here is the substitution $u=e^{x}, d u=e^{x} d x$, so that the integral becomes (changing the limits to $1=e^{0}$ and $e=e^{1}$, of course)

$$
\int_{1}^{e} 2 \pi \sqrt{1+u^{2}} d u
$$

Using the formula provided for you on the test, this is equivalent to

$$
\frac{1}{2} u \sqrt{1+u^{2}}+\left.\frac{1}{2} \ln \left(u+\sqrt{1+u^{2}}\right)\right|_{1} ^{e}
$$

Plugging in the numbers, we get

$$
\frac{1}{2} e \sqrt{1+e^{2}}+\frac{1}{2} \ln \left(e+\sqrt{1+e^{2}}\right)-\frac{1}{2} \sqrt{2}-\frac{1}{2} \ln (1+\sqrt{2})
$$

as our solution.
3. Let \mathcal{C} be the curve traced out by the parametric equations

$$
\begin{array}{r}
x=t^{3}+t \\
y=t^{3}+t^{2}+t
\end{array}
$$

a) Find all the points on \mathcal{C} where the tangent line has slope 1 .

Solution: The tangent line at t is given by the formula $\frac{d y / d t}{d x / d t}$. In this case, it becomes $\frac{3 t^{2}+2 t+1}{3 t^{2}+1}$. When this is set equal to one, we have $3 t^{2}+2 t+1=3 t^{2}+1$. This gives us $t=0$, so the answer is (0,0).
b) At how many points does \mathcal{C} intersect the line $y=x$?

Solution: Filling in the formulas in t in the equation $y=x$, we get $t^{3}+t=t^{3}+t^{2}+t$. This gives $t^{2}=0$ or $t=0$. So $(0,0)$ is the answer.
4. Sketch the curve given by the polar equation $r=|\sin \theta|$.

Solution: The graph looks like this:

5. There were lots of interesting correct explanations as to why c) was the right answer. For me, the fact that the curve couldn't get past -1.5 and 1.5 is an indication that there is a horizontal asymptote for y. Choice c) was the only parametic system that had a y function with horizontal asymptotes.

