Name: \qquad
SID: \qquad
Section: \qquad

Final Exam -Math 022-F ‘07

The exam is 3 hours long. No calculators or notes are permitted. Show your work. You do not need to simplify your answers.
$\begin{array}{|c|l|}\hline \text { Problem } & \begin{array}{l}\text { Score out } \\ \text { of } 10\end{array} \\$\cline { 2 - 3 } \& 1
 \hline 2 \&
 \cline { 2 - 3 } \& 3\end{array}$]$

1. It is a fact that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

How well does $\sum_{n=1}^{20} \frac{1}{n^{2}}$ approximate $\frac{\pi^{2}}{6}$?
2. Sketch the polar curve $r=\sin (2 \theta)$ on the coordinate axes given below. Find the area of one "leaf".

3. Find the area of the finite region bounded by the curves $y=x^{2}, y=$ $(x-2)^{2}$, and $y=0$.

For the follow two problems, determine whether the series converges. Explain your reasoning for both.
4.

$$
\sum_{n=1}^{\infty} e^{-\frac{n^{2}}{2}}
$$

5.

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{n}
$$

6. In the coordinate axes given below, carefully sketch the conic section given by

$$
\frac{x^{2}}{4}-y^{2}=1
$$

7. Find the partial fraction decomposition for $\frac{x^{2}-x+1}{(x-1)^{3}}$.
8. Find the volume of the solid resulting from rotating the region bounded by the following curves around the y-axis.

$$
x=1, x=2, y=0, y=1 / x
$$

9. Explain why the following integral is improper. Then compute its value (if it has one).

$$
\int_{0}^{1} x^{2} \ln x d x
$$

10. (Extra Credit 5 points)

The series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converges to a finite number s. Find s.
Hint: What is $s-\frac{1}{2} s$?

