Instructions

Attempt all questions. Answers must be justified in order to gain full credit. Calculators are not permitted. Turn this question sheet in with your blue book.
Time allowed: 50 minutes
Some useful trigonomteric identites:

$$
\begin{aligned}
& \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B
\end{aligned}
$$

1. Evaluate the following integrals.
(i) (5 points) $\int x \ln x \mathrm{~d} x$
(ii) (5 points) $\int x^{2} \sqrt{x-2} \mathrm{~d} x$
(iii) (5 points) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} \mathrm{~d} x$
2. (10 points) By making a trigonometric substitution, evaluate the indefinite integral

$$
\int \frac{x^{2}}{\sqrt{9-4 x^{2}}} \mathrm{~d} x
$$

3. (10 points) Find $\int x \sin ^{6} x^{2} \mathrm{~d} x$ using the reduction formula

$$
\int \sin ^{n} x \mathrm{~d} x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n}{n-1} \int \sin ^{n-2} x \mathrm{~d} x, \quad n \text { positive. }
$$

Note: you will need to transfrom the integral first.
4. (15 points) Find the exact area of the region bounded by the curve $y=\frac{2 x^{2}+3 x+3}{\left(x^{2}+1\right)(x+2)}$, the x-axis, $x=0$ and $x=1$.

