1. (i) Calculate the approximations MID(4) and TRAP(4) to $\int_{1}^{3} (1-x^2) dx$.

(ii) Without evaluating the integral, determine if the approximation is an under-estimate or an over-estimate.

2. Calculate the integrals if they converge.

(i)
$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 25} dx$$
 (ii) $\int_{\pi/4}^{\pi/2} \frac{\sin x}{\sqrt{\cos x}} dx$ (iii) $\int_{3}^{6} \frac{1}{(4-x)^2} dx$

3. Decide whether the improper integrals converge or diverge.

(i)
$$\int_{2}^{\infty} \frac{1}{\sqrt{1+x^{3}}} dx$$
 (ii) $\int_{0}^{\pi} \frac{2-\sin x}{x^{2}} dx$ (iii) $\int_{0}^{\infty} \frac{1}{e^{x}+2^{x}} dx$

- 4. Find, by slicing, a formula for the volume of a cone of height h and base radius r.
- 5. Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, x = 1, and y = 0 about the axis x = 2.
- 6. Find the volume of the solid whose base is the region bounded by $y = 2e^x$, x = 1, and the lines x = 0 and x = 1 and whose cross-sections perpendicular to the *x*-axis are equilateral triangles.
- 7. Find the arc length of the parametric curve $x = \cos 3t$, $y = \sin 5t$ for $0 \le t \le 2\pi$.
- 8. Sketch the polar curve $r = \cos 2\theta$.
- 9. Find the area of the region that lies inside the cardioid $r = 1 \sin \theta$ and outside the circle r = 1/2.
- 10. For what values of θ on the polar curve $r = \theta$, with $0 \le \theta \le 2\pi$, are the tangent lines horizontal? Vertical?
- 11. Find the arc length of the polar curve $r = 1/\theta$ for $\pi \le \theta \le 2\pi$.
- 12. The density of oil in a circular oil slick on the surface of the ocean at a distance r meters from the center of the slick is given by $\delta(r) = 50/(1 + r) \text{ kg/m}^2$.

(i) If the slick extends from r = 0 to r = 10,000 m, find a Riemann sum approximating the total mass of oil in the slick.

- (ii) Find the exact value of the mass of oil in the slick.
- (iii) Within what distance r is half the oil of the slick contained?
- 13. A metal plate, with constant density 5 gm/cm², has a shape bounded by the curve $y = \sqrt{x}$ and the *x*-axis, with $0 \le x \le 1$ and x, y in cm.
 - (i) Find the total mass of the plate.
 - (ii) Find \overline{x} and \overline{y} .