1. (i) Calculate the approximations $\operatorname{MID}(4)$ and $\operatorname{TRAP}(4)$ to $\int_{1}^{3}\left(1-x^{2}\right) \mathrm{d} x$.
(ii) Without evaluating the integral, determine if the approximation is an under-estimate or an over-estimate.
2. Calculate the integrals if they converge.
(i) $\int_{-\infty}^{\infty} \frac{1}{x^{2}+25} \mathrm{~d} x$
(ii) $\int_{\pi / 4}^{\pi / 2} \frac{\sin x}{\sqrt{\cos x}} \mathrm{~d} x$
(iii) $\int_{3}^{6} \frac{1}{(4-x)^{2}} \mathrm{~d} x$
3. Decide whether the improper integrals converge or diverge.
(i) $\int_{2}^{\infty} \frac{1}{\sqrt{1+x^{3}}} \mathrm{~d} x$
(ii) $\int_{0}^{\pi} \frac{2-\sin x}{x^{2}} \mathrm{~d} x$
(iii) $\int_{0}^{\infty} \frac{1}{e^{x}+2^{x}} \mathrm{~d} x$
4. Find, by slicing, a formula for the volume of a cone of height h and base radius r.
5. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}, x=1$, and $y=0$ about the axis $x=2$.
6. Find the volume of the solid whose base is the region bounded by $y=2 e^{x}, x=1$, and the lines $x=0$ and $x=1$ and whose cross-sections perpendicular to the x-axis are equilateral triangles.
7. Find the arc length of the parametric curve $x=\cos 3 t, y=\sin 5 t$ for $0 \leq t \leq 2 \pi$.
8. Sketch the polar curve $r=\cos 2 \theta$.
9. Find the area of the region that lies inside the cardioid $r=1-\sin \theta$ and outside the circle $r=1 / 2$.
10. For what values of θ on the polar curve $r=\theta$, with $0 \leq \theta \leq 2 \pi$, are the tangent lines horizontal? Vertical?
11. Find the arc length of the polar curve $r=1 / \theta$ for $\pi \leq \theta \leq 2 \pi$.
12. The density of oil in a circular oil slick on the surface of the ocean at a distance r meters from the center of the slick is given by $\delta(r)=50 /(1+r) \mathrm{kg} / \mathrm{m}^{2}$.
(i) If the slick extends from $r=0$ to $r=10,000 \mathrm{~m}$, find a Riemann sum approximating the total mass of oil in the slick.
(ii) Find the exact value of the mass of oil in the slick.
(iii) Within what distance r is half the oil of the slick contained?
13. A metal plate, with constant density $5 \mathrm{gm} / \mathrm{cm}^{2}$, has a shape bounded by the curve $y=\sqrt{x}$ and the x-axis, with $0 \leq x \leq 1$ and x, y in cm .
(i) Find the total mass of the plate.
(ii) Find \bar{x} and \bar{y}.
