1. A cone with height 12 ft and radius 4 ft , pointing downward, is filled with water to a depth of 9 ft . Find the work required to pump all the water out over the top. (Water weighs 62.4 $\left.\mathrm{lb} / \mathrm{ft}^{3}\right)$.
2. A leaky $10-\mathrm{kg}$ bucket is lifted from the ground to a height of 12 m at a constant speed with a rope that weighs $0.8 \mathrm{~kg} / \mathrm{m}$. Initially the bucket contains 36 kg of water, but the water leaks at a constant rate and finishes draining just as the bucket reaches the 12 m level. How much work is done?
3. A dam has the shape of the trapezoid shown in the figure below. Find the force on the dam due to hydrostatic pressure if the water level is 4 m from the top of the dam.

4. Find the hydrostatic force on one end of a cylindrical drum with radius 3 ft if the drum is submerged in water 10 ft deep.

5. Test the series for convergence or divergence.
(i) $\sum_{n=1}^{\infty} \frac{5^{n}}{1+7^{n}}$
(ii) $\sum_{n=1}^{\infty} \frac{n}{\left(7+n^{2}\right)^{3}}$
(iii) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$
(iv) $\sum_{n=1}^{\infty} \frac{(2 n)!}{n!(n+1)!}$
(v) $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$
(vi) $\sum_{n=1}^{\infty} \frac{1}{n e^{n}}$
(vii) $\sum_{n=1}^{\infty} \frac{n \sin n}{n^{3}+1}$
(viii) $\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^{2}}$
6. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$ is absolutely convergent, conditionally convergent, or divergent.
7. Find the radius of convergence and the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{5^{n}(x-2)^{n}}{8 n^{7}}$.
