Instructions: Write your name and section number. Draw grading table on the cover. Read each problem carefully and follow all of its instructions. For each of the problems below, write a clear and concise solution in your blue book. Solutions must be simplified as much as possible, no full credit for partially completed problems. Blue books with torn or missing pages will not be accepted !

Some useful trigonometric identities:
$\begin{array}{ll}\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B & \sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta)) \\ \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B & \cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))\end{array}$

1. Sequence is defined by $a_{1}=10, a_{n+1}=1 / 2\left(a_{n}+2\right)$
a. Write out first four terms of the sequence. (5 pts)
b. Assuming that the limit exists, find the $\lim _{n \rightarrow \infty} a_{n}$ ($5 \mathbf{p t s}$)
2. Find the tangent line to $\mathrm{x}=\sec (\mathrm{t}), \mathrm{y}=2 \sin (\mathrm{t}) \cos (\mathrm{t})$ at $\left(\frac{2}{\sqrt{3}}, \frac{\sqrt{3}}{2}\right)$ (Note: You must give the equation of the line) ($\mathbf{1 0} \mathbf{~ p t s}$)
3. Find the volume of revolution when region bounded by $y=\frac{1}{x}, x \geq 1$ and $y=0$ is revolved around the x -axis. ($\mathbf{1 0} \mathbf{~ p t s)}$
4. A laser is cutting a sheet of plastic along the arc described by $y=\frac{1}{3} x^{3 / 2}$ from $x=$ -4 cm to $\mathrm{x}=32 \mathrm{~cm}$. If the laser spot is moving at $0.5 \mathrm{~cm} / \mathrm{sec}$, calculate the time it takes to complete the cut. ($\mathbf{1 0} \mathbf{~ p t s)}$
5. A metal plate has a shape bounded by polar curve $r=2+\sin (\theta)$ where r is in centimeters
a. What type of symmetry does the plate possess? Prove this. ($\mathbf{3} \mathbf{~ p t s}$)
b. Sketch the shape of the plate ($\mathbf{3} \mathbf{~ p t s}$)
c. Find the area of the plate. ($\mathbf{4} \mathbf{~ p t s)}$
