Instructions: Write your name and section number. Draw grading table on the cover. Read each problem carefully and follow all of its instructions. For each of the problems below, write a clear and concise solution in your blue book. Solutions must be simplified as much as possible, no full credit for partially completed problems. Blue books with torn or missing pages will not be accepted !

1. (10 pts) Answer the following Always True (T) or False (F). Only your final answers will be graded on these problems. Unless specified \sum refers to infinite sum. (1 pt each)
a. Alternating series are monotonic
b. If $\sum a_{n}$ is a convergent series then $\sum \frac{1}{a_{n}}$ is also a convergent series.
c. If $\sum a_{n}$ is a divergent series with positive terms then $\sum(-1)^{n} a_{n}$ also divergent.
d. Integral test can be used to calculate the exact sum of infinite series.
e. Series $\sum \sin (n)$ converges
f. If $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms $\mathrm{a}_{\mathrm{n}}>\mathrm{b}_{\mathrm{n}}$ and $\sum b_{n}$ diverges then $\sum a_{n}$ also diverges.
g. Ratio test can be used to prove that $\sum n^{-1}$ diverges.
h. Series $\sum(-1)^{n} / n$ converges absolutely
i. Remainder can be used to estimate the error of a partial sum
j. If $\sum a_{n}$ is a convergent series then $\lim _{n \rightarrow \infty} a_{n}=0$
2. (10 pts) Amount of money deposited in the bank account every month is given by the formula $a_{n}=100\left(\frac{2^{n}+4^{n}}{5^{n}}\right)$ where n is the month number starting with $\mathrm{n}=1$. If initial account balance is $\$ 0$, find the balance after a long time.
3. (10 pts) The terms of a series are defined recursively by the equation $a_{1}=2 \quad a_{n+1}=\frac{n}{n^{2}+2} a_{n}$. Determine whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges.
4. (10 pts) Determine whether the series $\sum_{n=1}^{\infty} \frac{n}{n^{3}-1}$ is convergent or divergent.
5. (10 pts) Show that $\sum_{n=1}^{\infty} \frac{5^{n}}{n!}$ converges.
