1. (25 points)

$$
\int_{0}^{\pi / 4} x^{2} \cos 2 x d x
$$

Solution:

This is just normal integration by parts with the formula given by $\int u d v=u v-\int v d u$. We shall make the following substitutions:

$$
\begin{aligned}
& u=x^{2} \\
& d u=2 x d x \\
& d v=\cos 2 x d x \\
& v=\frac{1}{2} \sin 2 x
\end{aligned}
$$

Thus, $\Rightarrow \frac{1}{2} x^{2} \sin 2 x-\int x \sin 2 x d x$
Now, we use integration by parts a second time with the following substitutions:
$u=x$
$d u=d x$
$d v=\sin 2 x d x$
$v=-\frac{1}{2} \cos 2 x$
Thus, $\Rightarrow \frac{1}{2} x^{2} \sin 2 x+\frac{1}{2} x \cos 2 x+\int-\frac{1}{2} \cos 2 x d x$
$\Rightarrow \frac{1}{2} x^{2} \sin 2 x+\frac{1}{2} x \cos 2 x-\frac{1}{2} \int \cos 2 x d x$
$\Rightarrow \frac{1}{2} x^{2} \sin 2 x+\frac{1}{2} x \cos 2 x-\frac{1}{4} \sin 2 x$
$\Rightarrow\left[\frac{1}{2} x^{2} \sin 2 x+\frac{1}{2} x \cos 2 x-\frac{1}{4} \sin 2 x\right]_{0}^{\pi / 4}$

$$
\text { Note: } \begin{aligned}
& \sin (\pi / 2)=1 \\
& \sin (0)=0 \\
& \cos (\pi / 2)=0 \\
& \cos (0)=1
\end{aligned}
$$

Plugging in zero yields 0
Thus,
$\frac{1}{2} \frac{\pi^{2}}{16} \sin (\pi / 2)+\frac{1}{2} \frac{\pi}{4} \cos (\pi / 2)-\frac{1}{4} \sin (\pi / 2)$
$\Rightarrow \frac{\pi^{2}}{32}-\frac{1}{4}$ or $\frac{1}{4}\left(\frac{\pi^{2}}{8}-1\right)$

Vikram Rao
Devin Greene
2. (25 points)

$$
\int 4 x \cos ^{4}\left(x^{2}\right) d x
$$

This is quite the tricky integral, but by means of substitution, this integral will become simpler to solve. To start, you can make a primary substitution to simplify the integral.

For this case, I will let $u=x^{2}$ meaning that $d u=2 x d x$ (Note: you can use any variable for substitution as long as the appropriate substitution has been made).
Thus, after substitution, the resulting integral becomes:
$\Rightarrow \int 2 \cos ^{4}(u) d u$
Recall that $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$; This property will help us simplify the integral even more.
If $\cos ^{2} u=\frac{1}{2}(1+\cos 2 u)$, then $\cos ^{4} u=\frac{1}{4}+\frac{1}{2} \cos 2 u+\frac{1}{4} \cos ^{2} 2 u$; This is another property we can use to help us.

Thus $\Rightarrow \int 2 \cos ^{4}(u) d u=\int\left(\frac{1}{2} \cos ^{2} 2 u+\cos 2 u+\frac{1}{2}\right) d u$
We can make one more substitution with the property of $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$. With that, $\cos ^{2} 2 x=\frac{1}{2}(1+\cos 4 x)$ by means of using our double-angle formula.
Thus, $\int\left(\frac{1}{4}+\frac{1}{4} \cos 4 u+\cos 2 u+\frac{1}{2}\right) d u \Rightarrow \int\left(\frac{3}{4}+\frac{1}{4} \cos 4 u+\cos 2 u\right) d u$
Now this is just a simple trigonometric expression in which we know how to integrate.
$\Rightarrow \int\left(\frac{3}{4}+\frac{1}{4} \cos 4 u+\cos 2 u\right) d u=\frac{3}{4} u+\frac{1}{16} \cos 4 u+\frac{1}{2} \cos 2 u$
We are not done yet. We started with x and ended u. Therefore we need to back-substitute with x.
$\therefore \frac{3}{4} x^{2}+\frac{1}{16} \cos 4 x^{2}+\frac{1}{2} \cos 2 x^{2}+C$
3. (25 points)

$$
\int_{0}^{\pi / 4} \sin (6 x) \sin (7 x) d x
$$

Solution:

Simplest method to compute this integral is by the following property:
$\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$ with our $A=6$ and $B=7$
Thus, $\int_{0}^{\pi / 4} \sin (6 x) \sin (7 x) d x=\frac{1}{2} \int_{0}^{\pi / 4} \cos (-x)-\cos (13 x) d x \quad$ Note: $\cos (-x)=\cos x$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \int_{0}^{\pi / 4} \cos (x)-\cos (13 x) d x=\frac{1}{2}\left[\sin x-\frac{\sin 13 x}{13}\right]_{0}^{\pi / 4} \\
& \Rightarrow \frac{1}{2}\left(\frac{\sqrt{2}}{2}-\frac{-\frac{\sqrt{2}}{2}}{13}\right)-(0-0) \Rightarrow \frac{1}{2}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{26}\right)=\frac{7 \sqrt{2}}{26} \text { (After simplification) } \\
& \sin (\pi / 4)=\sqrt{2} / 2 \\
& \sin (0)=0
\end{aligned}
$$

4. (25 points)

$$
\int \frac{d x}{\left(x^{2}-1\right)^{5 / 2}}
$$

Solution:

Using the rules for trigonometric substitution, we shall let $x=\sec \theta$ thus, $d x=\sec \theta \tan \theta d \theta$. Please see the right triangle below for more details.

1

Now we substitute everything into the integral to have a new integral written in terms of θ.
$\int \frac{\sec \theta \tan \theta}{\left(\sec ^{2} \theta-1\right)^{5 / 2}} d \theta \quad$ We require the relationship that $\begin{aligned} \tan ^{2} \theta+1 & =\sec ^{2} \theta \\ \sec ^{2} \theta-1 & =\tan ^{2} \theta\end{aligned}$
$\Rightarrow \int \frac{\sec \theta \tan \theta}{\left(\sec ^{2} \theta-1\right)^{5 / 2}} d \theta=\int \frac{\sec \theta \tan \theta}{\left(\tan ^{2} \theta\right)^{5 / 2}} d \theta=\int \frac{\sec \theta \tan \theta}{\left(\tan ^{5} \theta\right)} d \theta=\int \frac{\sec \theta}{\tan ^{4} \theta} d \theta$

Vikram Rao
Devin Greene
Math 22 Spring 2008
The next best thing to do for this case is rewrite $\tan \theta \& \sec \theta$ in terms of $\sin \theta \& \cos \theta$
$\Rightarrow \int \frac{1 / \cos \theta}{\sin ^{4} \theta / \cos ^{4} \theta} d \theta=\int \frac{\cos ^{3} \theta}{\sin ^{4} \theta} d \theta=\int \frac{\left(1-\sin ^{2} \theta\right)}{\sin ^{4} \theta} \cos \theta d \theta\left(\right.$ Used $\left.\sin ^{2} x+\cos ^{2} x=1\right)$
Now we can use u - substitution by the following. $u=\sin \theta$

$$
d u=\cos \theta d \theta
$$

Please note the following steps from transforming the integral and back substitution twice:
$\int \frac{1}{u^{4}}-\frac{1}{u^{2}} d u \Rightarrow-\frac{1}{3} \frac{1}{u^{3}}+\frac{1}{u}=-\frac{1}{3 \sin ^{3} \theta}+\frac{1}{\sin \theta}$
From the triangle above and our original substitution of $x=\sec \theta$, thus, $\sin \theta=\frac{\sqrt{x^{2}-1}}{x}$ Therefore, plugging in and adding our constant C, the end result becomes:
$-\frac{x^{3}}{3\left(\sqrt{x^{2}-1}\right)^{3}}+\frac{x}{\sqrt{x^{2}-1}}+C$
(Extra Credit, 5 extra points for correct answer with correct explanation)

$$
\int_{0}^{2 \pi} \sin ^{25} x d x
$$

There are several ways to do this. I shall show two types of methods: conceptual and u substitution.

Conceptual Method:

No matter what power that sine is taken to, on revolution of sine goes above and below the x-axis. There is one shape above the axis and one shape of the exact size below the axis. By taking the areas under the curve, there will be a negative area that cancels out with the positive area, thus $\int_{0}^{2 \pi} \sin ^{25} x d x=0$
Also, the integrand is odd for the revolution, so the integral will result in 0 anyway.

U-Substitution Method:

I shall rewrite the integral in terms of sine and cosine because the power of sine is odd.

Vikram Rao
Devin Greene

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sin ^{25} x d x \Rightarrow \int_{0}^{2 \pi}\left(1-\cos ^{2} x\right)^{12} \sin x d x \\
& u=\cos x \\
& d u=-\sin x d x \\
& x=0, u=1 \\
& x=2 \pi, u=1 \\
& \Rightarrow-\int_{1}^{1}\left(1-u^{2}\right)^{12} d u
\end{aligned}
$$

The bounds for the u-substitution are the same, thus, the integral results in 0

