Math 22 Midterm 2: Spring 2008 Solutions

1. (15 points) Write the correct form of the partial fraction decomposition of the rational function below. Find the numerator of the terms whose denominator is $(x+1)^2$

$$\frac{x^2 + x + 3}{(x+1)^2(x^2+5)}$$

Solution:

1. We need the form of the decomposition, in other words, the setup before finding the constants in any partial fractions situation.

$$\frac{x^2 + x + 3}{(x+1)^2(x^2+5)} = \boxed{\frac{A}{(x+1)} + \frac{B}{(x+1)^2} + \frac{Cx+D}{(x^2+5)}}$$

Afterwards, you are asked to find the numerator of the term whose denominator is $(x+1)^2$, in other words, *B*.

To do so, we need to set a common denominator of $(x+1)^2 (x^2+5)$, which will be seen below in order to equate the numerators:

$$x^{2} + x + 3 = A(x+1)(x^{2}+5) + B(x^{2}+5) + (Cx+D)(x+1)^{2}$$

Now, we let x = -1, so the terms with *A*, *C*, and *D*, cancel out (in other words, or go to zero)

$$\rightarrow 3 = 6B \quad B = \frac{1}{2}$$

2. (15 points) Determine which of the following expressions is correct if one uses

Simpson's Rule to approximate the integral $\int_{0}^{n} f(x) dx$ with n = 4.

(a)
$$\frac{1}{4} \left[f\left(\frac{3}{8}\right) + 4f\left(\frac{9}{8}\right) + 2f\left(\frac{15}{8}\right) + 4f\left(\frac{21}{8}\right) \right]$$

(b) $\frac{1}{4} \left[f(0) + 4f\left(\frac{3}{4}\right) + 2f\left(\frac{3}{2}\right) + 4f\left(\frac{9}{4}\right) + f(3) \right]$
(c) $\frac{3}{8} \left[f(0) + 2f\left(\frac{3}{4}\right) + 2f\left(\frac{3}{2}\right) + 2f\left(\frac{9}{4}\right) + f(3) \right]$

(d) $\frac{3}{4} \left[f(0) + f\left(\frac{3}{4}\right) + f\left(\frac{3}{2}\right) + f\left(\frac{3}{4}\right) \right]$

Solution:

This multiple choice question can be done either by using process of elimination or knowledge of the formula for Simpson's Rule.

First, we know our bounds range from 0 to 3. So our (b-a) = 3

So our $\Delta x = \left(\frac{b-a}{n}\right) \rightarrow \frac{3}{4}$ but since Simpson's Rule requires our Δx to be divided by 3,

 $\Delta x_{Simpson's Rule} = \frac{\frac{3}{4}}{3} = \frac{1}{4}$ This immediately eliminates choices C and D.

From there, the basic approximation start point starts from f(a) = f(0) for the Simpson's Rule, rather than f(3/8), which eliminates choice A, so with all of the other choices eliminated,

: Choice B is correct

3. (15 points) Determine whether the following improper integral converges. If it does converge, compute the value of the integral.

$$\int_{0}^{\infty} x^2 e^{-x} dx$$

Solution:

3. We need to use integration by parts for the integral: $\int_{0}^{\infty} x^{2} e^{-x} dx \qquad du = 2x \, dx$ $v = -e^{-x}$ $dv = e^{-x} dx$ u = 2x $du = 2 \, dx$ u = 2x $du = 2 \, dx$ $u = 2 \, dx$ $du = 2 \, dx$ $v = -e^{-x}$ $dv = e^{-x} \, dx$

$$\rightarrow \frac{x^2}{e^x} - 2xe^{-x} + \int 2e^{-x} dx \qquad \therefore \left[x^2e^{-x} - 2xe^{-x} - 2e^{-x}\right]^{\infty}$$

Applying the first bound of infinity requires the use of L'Hospital's Rule on the first term twice and second term once, but the whole part yields 0 when infinity is applied.

When 0, is applied, both of the first two terms go to 0, but the last one goes to -2 in the following way:

$$\Rightarrow (0-0-0) - \left(0-0-\frac{2}{e^0}\right) = 2$$

 \therefore The integral is **<u>convergent</u>** with a limit of 2.

4. (15 points) Sketch the finite region bounded by the two curves below. Find the area of this region.

$$x = y^2 - 1, x = 1 - y^4$$

Solution:

This is what the region looks like along with its viewing rectangle: Now, we integrate with respect to y to find the area by subtracting the left side of the region from the right as shown in the rectangle.

5. (15 points) The integral $\int_{0}^{\pi} \pi \sin^2 x \, dx$ can be interpreted as the volume of a solid of

revolution. Using a geometric interpretation, find the integral in the list below which yields the same value. Note that it is possible to do this problem without computing any integral.

(a)
$$2\int_{0}^{1} 2\pi y \left(\frac{\pi}{2} - \sin^{-1} y\right) dy$$

(b) $\int_{0}^{\pi} 2\pi x \sin x \, dx$
(c) $\int_{0}^{\pi} \sin x \, dx$
(d) $\int_{0}^{1} \pi \left[(\pi - \sin^{-1} y)^2 - (\sin^{-1} y)^2 \right] dy$

Solution:

We are given that $\int_{0}^{n} \pi \sin^2 x \, dx$ is an expression of volume of revolution.

However, this is just a simple expression for the disc method of rotating the curve of $f(x) = \sin x$ ($0 \le x \le \pi$) about the *x*-axis.

We can use the method of cylindrical shells to do evaluation the same volume of revolution as we were given.

Choice C seems to just be the method of finding the area under the curve of $f(x) = \sin x$ ($0 \le x \le \pi$). We needed a volume expression so that is eliminated.

For the method of cylindrical shells, we use the corresponding y-values of the graph of $f(x) = \sin x$. Choice B is incorrect because of both the wrong bounds.

Choice A shows that the bounds for rotation for normal xy rotation about the x-axis are 0 to $\pi/2$. However, they have doubled the resulting rotation with the correct radius. With shells, rotation about the x-axis uses y bounds.

Therefore, Choice A is correct.

6. (15 points) Suppose the curve *C* can be represented in two ways: y = f(x), $a \le x \le b$; or x = g(y), $c \le y \le d$. Let *S* be the surface of revolution obtained by rotating *C* around the *x*-axis. Which *two* of the integrals below give the surface area of *S*?

(a)
$$\int_{c}^{d} 2\pi g(y)\sqrt{1+g'(y)^2} dy$$

(b) $\int_{a}^{b} 2\pi x\sqrt{1+f'(x)^2} dx$
(c) $\int_{a}^{b} 2\pi f(x)\sqrt{1+f'(x)^2} dx$
(d) $\int_{a}^{d} 2\pi y\sqrt{1+g'(y)^2} dy$

Solution:

This can also be done by either process of elimination or knowledge of the manipulations of the surface area of revolution formulas. We can eliminate Choice B because the expression $2\pi x$ is used for rotation about the *y*-axis. In addition, Choice A is incorrect because that is also rotation about the *x*-axis. Choice C is correct because of the correct bounds and notation for the specified axis of rotation. With the other choices either chosen or eliminated, Choice D is the remaining correct one because is also in the format of Choice C in simplified Leibniz notation.

: Choices C and D

7. (10 points) Write out, but do not evaluate, the integral whose value is the length of the curve $x = e^{-y^2}$, $0 \le y \le 1$.

Solution:

For this problem, we can use the formula for arc length in terms of y, which is

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$$
 Since our bounds for y in terms of x are known (0 and 1), we need

to just differentiate $x = e^{-y^2}$ with respect to y by using the Chain Rule and then square our resulting derivative.

Thus,
$$\frac{dx}{dy} = -2ye^{-y^2} \Rightarrow \left(\frac{dx}{dy}\right)^2 = 4y^2e^{-2y^2}$$

From there, we just substitute with our solved information:

$$\Rightarrow L = \int_0^1 \sqrt{1 + 4y^2 e^{-2y^2}} \, dy$$