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Math 22 Midterm 2: Spring 2008 Solutions 

 

1. (15 points) Write the correct form of the partial fraction decomposition of the rational 

function below. Find the numerator of the terms whose denominator is 2)1( +x  
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Solution: 

1. We need the form of the decomposition, in other words, the setup before finding 

the constants in any partial fractions situation. 
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Afterwards, you are asked to find the numerator of the term whose denominator is 
2)1( +x , in other words, B.  

 

To do so, we need to set a common denominator of 2)1( +x )5( 2
+x , which will be 

seen below in order to equate the numerators: 

 
2222 )1)(()5()5)(1(3 +++++++=++ xDCxxBxxAxx  

 

Now, we let x = -1, so the terms with A, C, and D, cancel out (in other words, or go to 

zero) 
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2. (15 points) Determine which of the following expressions is correct if one uses 

Simpson’s Rule to approximate the integral ∫
3

0

)( dxxf with n = 4. 
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Solution: 

This multiple choice question can be done either by using process of elimination or 

knowledge of the formula for Simpson’s Rule. 

 

First, we know our bounds range from 0 to 3. So our (b-a) =3 

 

So our 
4

3
→







 −
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x  but since Simpson’s Rule requires our x∆ to be divided by 

3,  

4
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' ==∆ RulesSimpsonx  This immediately eliminates choices C and D. 

From there, the basic approximation start point starts from f (a)= f (0) for the Simpson’s 

Rule, rather than f(3/8), which eliminates choice A, so with all of the other choices 

eliminated,  

 

∴Choice B is correct 

 

3. (15 points) Determine whether the following improper integral converges. If it 

does converge, compute the value of the integral.  
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Solution: 

3. We need to use integration by parts for the integral: dxex
x−

∞

∫
0

2  

dxedv

ev

dxxdu

xu

x

x

−

−

=

−=

=

=

2

2

 

dxxe
e

x x

x ∫
−

+→ 2
2

 Now we use integration by parts again. 
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Applying the first bound of infinity requires the use of L’Hospital’s Rule on the first term 

twice and second term once, but the whole part yields 0 when infinity is applied. 
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When 0, is applied, both of the first two terms go to 0, but the last one goes to -2 in the 

following way: 
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∴The integral is convergent with a limit of 2.  

 

 

 

4. (15 points) Sketch the finite region bounded by the two curves below. Find the 

area of this region.  

12
−= yx , 41 yx −=  

Solution: 

This is what the region looks like along with its viewing rectangle: 

Now, we integrate with respect to y to find the area by subtracting the left side of the 

region from the right as shown in the rectangle. 
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5. (15 points) The integral dxx∫
π

π
0

2sin  can be interpreted as the volume of a solid of 

revolution. Using a geometric interpretation, find the integral in the list below 

which yields the same value. Note that it is possible to do this problem without 

computing any integral.  
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Solution: 

We are given that dxx∫
π

π
0

2sin  is an expression of volume of revolution.  

 

However, this is just a simple expression for the disc method of rotating the curve of 

xxf sin)( =  ( π≤≤ x0 ) about the x-axis. 

 

We can use the method of cylindrical shells to do evaluation the same volume of 

revolution as we were given. 

 

Choice C seems to just be the method of finding the area under the curve of 

xxf sin)( =  ( π≤≤ x0 ). We needed a volume expression so that is eliminated. 

 

For the method of cylindrical shells, we use the corresponding y-values of the graph 

of xxf sin)( = . Choice B is incorrect because of both the wrong bounds. 

 

Choice A shows that the bounds for rotation for normal xy rotation about the x-axis 

are 0 to 2/π . However, they have doubled the resulting rotation with the correct 

radius. With shells, rotation about the x-axis uses y bounds. 

 

Therefore, Choice A is correct.  

6. (15 points) Suppose the curve C can be represented in two ways: ;),( bxaxfy ≤≤= or 

.),( dycygx ≤≤= Let S be the surface of revolution obtained by rotating C around the 

x-axis. Which two of the integrals below give the surface area of S? 
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Solution: 

This can also be done by either process of elimination or knowledge of the manipulations 

of the surface area of revolution formulas. We can eliminate Choice B because the 

expression 2 xπ is used for rotation about the y-axis. In addition, Choice A is incorrect 

because that is also rotation about the x-axis. Choice C is correct because of the correct 

bounds and notation for the specified axis of rotation. With the other choices either 

chosen or eliminated, Choice D is the remaining correct one because is also in the format 

of Choice C in simplified Leibniz notation.  

 

∴ Choices C and D 

 

 

 

7. (10 points) Write out, but do not evaluate, the integral whose value is the length of the 

curve 10,
2

≤≤=
−

yex
y .  

Solution: 

For this problem, we can use the formula for arc length in terms of y, which is 
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to just differentiate 
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our resulting derivative. 
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From there, we just substitute with our solved information: 
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