Vikram Rao
Devin Greene Math 22 Spring 2008
Math 22 Midterm 2: Spring 2008 Solutions

1. (15 points) Write the correct form of the partial fraction decomposition of the rational function below. Find the numerator of the terms whose denominator is $(x+1)^{2}$

$$
\frac{x^{2}+x+3}{(x+1)^{2}\left(x^{2}+5\right)}
$$

Solution:

1. We need the form of the decomposition, in other words, the setup before finding the constants in any partial fractions situation.

$$
\frac{x^{2}+x+3}{(x+1)^{2}\left(x^{2}+5\right)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{\left(x^{2}+5\right)}
$$

Afterwards, you are asked to find the numerator of the term whose denominator is $(x+1)^{2}$, in other words, B.

To do so, we need to set a common denominator of $(x+1)^{2}\left(x^{2}+5\right)$, which will be seen below in order to equate the numerators:

$$
x^{2}+x+3=A(x+1)\left(x^{2}+5\right)+B\left(x^{2}+5\right)+(C x+D)(x+1)^{2}
$$

Now, we let $x=-1$, so the terms with A, C, and D, cancel out (in other words, or go to zero)
$\rightarrow 3=6 B \quad B=1 / 2$
2. (15 points) Determine which of the following expressions is correct if one uses Simpson's Rule to approximate the integral $\int_{0}^{3} f(x) d x$ with $n=4$.
(a) $\frac{1}{4}\left[f\left(\frac{3}{8}\right)+4 f\left(\frac{9}{8}\right)+2 f\left(\frac{15}{8}\right)+4 f\left(\frac{21}{8}\right)\right]$
(b) $\frac{1}{4}\left[f(0)+4 f\left(\frac{3}{4}\right)+2 f\left(\frac{3}{2}\right)+4 f\left(\frac{9}{4}\right)+f(3)\right]$
(c) $\frac{3}{8}\left[f(0)+2 f\left(\frac{3}{4}\right)+2 f\left(\frac{3}{2}\right)+2 f\left(\frac{9}{4}\right)+f(3)\right]$
(d) $\frac{3}{4}\left[f(0)+f\left(\frac{3}{4}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{9}{4}\right)\right]$

Vikram Rao
Devin Greene

Solution:

This multiple choice question can be done either by using process of elimination or knowledge of the formula for Simpson's Rule.

First, we know our bounds range from 0 to 3 . So our $(b-a)=3$
So our $\Delta x=\left(\frac{b-a}{n}\right) \rightarrow \frac{3}{4} \quad$ but since Simpson's Rule requires our Δx to be divided by 3 ,
$\Delta x_{\text {Simpson's Rule }}=\frac{3 / 4}{3}=\frac{1}{4} \quad$ This immediately eliminates choices C and D.
From there, the basic approximation start point starts from $f(a)=f(0)$ for the Simpson's Rule, rather than $f(3 / 8)$, which eliminates choice A , so with all of the other choices eliminated,

\therefore Choice B is correct

3. (15 points) Determine whether the following improper integral converges. If it does converge, compute the value of the integral.

$$
\int_{0}^{\infty} x^{2} e^{-x} d x
$$

Solution:

3. We need to use integration by parts for the integral: $\int_{0}^{\infty} x^{2} e^{-x} d x \quad \begin{aligned} & d u=2 x d x \\ & v=-e^{-x}\end{aligned}$

$$
u=x^{2}
$$

$d v=e^{-x} d x$
$u=2 x$
$\rightarrow \frac{x^{2}}{e^{x}}+\int 2 x e^{-x} d x \quad$ Now we use integration by parts again. $\begin{aligned} & d u=2 d x \\ & v=-e^{-x}\end{aligned}$ $d v=e^{-x} d x$
$\rightarrow \frac{x^{2}}{e^{x}}-2 x e^{-x}+\int 2 e^{-x} d x \quad \therefore\left[x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right]$

Applying the first bound of infinity requires the use of L'Hospital's Rule on the first term twice and second term once, but the whole part yields 0 when infinity is applied.

Vikram Rao
Devin Greene
Math 22 Spring 2008
When 0 , is applied, both of the first two terms go to 0 , but the last one goes to -2 in the following way:
$\Rightarrow(0-0-0)-\left(0-0-\frac{2}{e^{0}}\right)=2$
\therefore The integral is convergent with a limit of 2 .
4. (15 points) Sketch the finite region bounded by the two curves below. Find the area of this region.

$$
x=y^{2}-1, x=1-y^{4}
$$

Solution:

This is what the region looks like along with its viewing rectangle:
Now, we integrate with respect to y to find the area by subtracting the left side of the region from the right as shown in the rectangle.

$$
\begin{aligned}
& A=\int_{-1}^{1}\left[\left(1-y^{4}\right)-\left(y^{2}-1\right)\right] d y \\
& \Rightarrow A=\int_{-1}^{1}\left[\left(1-y^{4}-y^{2}+1\right] d y\right.
\end{aligned}
$$

$$
\Rightarrow A=\int_{-1}^{1}\left[\left(1-y^{4}-y^{2}+1\right] d y \Rightarrow\left[2 y-\frac{y^{5}}{5}-\frac{y^{3}}{3}\right]_{-1}^{1} \Rightarrow\left(2-\frac{1}{5}-\frac{1}{3}\right)-\left(-2+\frac{1}{5}+\frac{1}{3}\right)\right.
$$

$$
\Rightarrow\left(\frac{30}{15}-\frac{3}{15}-\frac{5}{15}\right)+\left(\frac{30}{15}-\frac{3}{15}-\frac{5}{15}\right) \Rightarrow \frac{44}{15}
$$

Vikram Rao
Devin Greene Math 22 Spring 2008
5. (15 points) The integral $\int_{0}^{\pi} \pi \sin ^{2} x d x$ can be interpreted as the volume of a solid of revolution. Using a geometric interpretation, find the integral in the list below which yields the same value. Note that it is possible to do this problem without computing any integral.
(a) $2 \int_{0}^{1} 2 \pi y\left(\frac{\pi}{2}-\sin ^{-1} y\right) d y$
(b) $\int_{0}^{\pi} 2 \pi x \sin x d x$
(c) $\int_{0}^{\pi} \sin x d x$
(d) $\int_{0}^{1} \pi\left[\left(\pi-\sin ^{-1} y\right)^{2}-\left(\sin ^{-1} y\right)^{2}\right] d y$

Solution:

We are given that $\int_{0}^{\pi} \pi \sin ^{2} x d x$ is an expression of volume of revolution.
However, this is just a simple expression for the disc method of rotating the curve of $f(x)=\sin x(0 \leq x \leq \pi)$ about the x-axis.

We can use the method of cylindrical shells to do evaluation the same volume of revolution as we were given.

Choice C seems to just be the method of finding the area under the curve of $f(x)=\sin x(0 \leq x \leq \pi)$. We needed a volume expression so that is eliminated.

For the method of cylindrical shells, we use the corresponding y-values of the graph of $f(x)=\sin x$. Choice B is incorrect because of both the wrong bounds.

Choice A shows that the bounds for rotation for normal $x y$ rotation about the x-axis are 0 to $\pi / 2$. However, they have doubled the resulting rotation with the correct radius. With shells, rotation about the x-axis uses y bounds.

Therefore, Choice A is correct.
6. (15 points) Suppose the curve C can be represented in two ways: $y=f(x), a \leq x \leq b$; or $x=g(y), c \leq y \leq d$. Let S be the surface of revolution obtained by rotating C around the x-axis. Which two of the integrals below give the surface area of S ?
(a) $\int_{c}^{d} 2 \pi g(y) \sqrt{1+g^{\prime}(\mathrm{y})^{2}} d y$
(b) $\int_{a}^{b} 2 \pi x \sqrt{1+f^{\prime}(\mathrm{x})^{2}} d x$
(c) $\int_{a}^{b} 2 \pi f(x) \sqrt{1+f^{\prime}(\mathrm{x})^{2}} d x$
(d) $\int_{c}^{d} 2 \pi y \sqrt{1+g^{\prime}(\mathrm{y})^{2}} d y$

Solution:

This can also be done by either process of elimination or knowledge of the manipulations of the surface area of revolution formulas. We can eliminate Choice B because the expression $2 \pi x$ is used for rotation about the y-axis. In addition, Choice A is incorrect because that is also rotation about the x-axis. Choice C is correct because of the correct bounds and notation for the specified axis of rotation. With the other choices either chosen or eliminated, Choice D is the remaining correct one because is also in the format of Choice C in simplified Leibniz notation.
\therefore Choices C and D
7. (10 points) Write out, but do not evaluate, the integral whose value is the length of the curve $x=e^{-y^{2}}, 0 \leq y \leq 1$.

Solution:

For this problem, we can use the formula for arc length in terms of y, which is
$L=\int_{a}^{b} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \quad$ Since our bounds for y in terms of x are known (0 and 1), we need to just differentiate $x=e^{-y^{2}}$ with respect to y by using the Chain Rule and then square our resulting derivative.

Thus, $\frac{d x}{d y}=-2 y e^{-y^{2}} \Rightarrow\left(\frac{d x}{d y}\right)^{2}=4 y^{2} e^{-2 y^{2}}$

From there, we just substitute with our solved information:

$$
\Rightarrow L=\int_{0}^{1} \sqrt{1+4 y^{2} e^{-2 y^{2}}} d y
$$

