\qquad

Vector Calculus

Exam 2
October $18^{\text {th }}$

There are 7 problems and 144 points total. The point value of each question is indicated. Read each question carefully!

1. (24 points.) Let $f(x, y)=x^{3}+3 x y^{2}$ and $g(x, y)=y^{3}+3 x^{2} y$ Compute the following
a. $\frac{\partial}{\partial x}(f(x, y)+g(x, y))=$
b. $\frac{\partial}{\partial y}(f(x, y)-g(x, y))=$
c. $\nabla(2 f(x, y))=$
2. Use the figure below to answer the following questions

a) (3 points) What is the sign of the derivative at point A in the direction of the vector shown at A ?
b) (3 points) What is the sign of the derivative at point B in the direction of the vector shown at B ?
c) (6 points) Draw a vector in the direction of the gradient at point A
d) (6 points) Draw a vector in the direction of the gradient at point B.
3. (18 points.) . Find the derivative of $f(x, y)=\sqrt{9 \cos (x)+16 y}$ at the point $(x, y)=(0,1)$ in the direction $(3,5)$
4. (12 points.) A large metal plate is being chilled unevenly. The loss of heat causes each point (x, y) to have temperature $T(x, y)$ measured in ${ }^{o} F$. We know that $T(0,1)=5, T_{x}(0,1)=0$, and $T_{y}(0,1)=8 / 5$. Estimate the temperature at the point $(0.02,0.95)$
5. (12 points) Let $z=\sqrt{x^{2}+y^{2}}, x=e^{\theta}$, and $y=e^{-\theta}$. Use the chain rule to compute $\frac{d z}{d \theta}$
6. Let $z=x^{2}-y^{2}, x=\frac{u+v}{2}$, and $y=\frac{u-v}{2}$.
a) (16 points) Use the chain rule to compute $\frac{\partial z}{\partial u}$
b) (16 points) Use the chain rule to compute $\frac{\partial z}{\partial v}$
c) (4 points) Compute $\nabla z(u, v)$
7. Let $f(x, y)=e^{x^{2}+y^{2}}$
a) (8 points) Find the critical points of $f(x, y)$
b) (16 points) Compute $f_{x y}(x, y)$ and $f_{y x}(x, y)$ and verify that $f_{x y}(x, y)=f_{y x}(x, y)$,

Extra credit Do not work on extra credit until you have finished the rest of the exam!
A. (3 points) Draw a small circle around a saddle point in the contour diagram in problem 2
B. (10 points) Show that wherever a level curve of $f(x, y)=\frac{y^{2}}{4 x} \quad$ intersects a level curve of $g(x, y)=2 x^{2}+y^{2}$ the two curves are perpendicular to each other.

