Vector Calculus Exam 2 October 18th

There are 7 problems and 144 points total. The point value of each question is indicated. *Read each question carefully!*

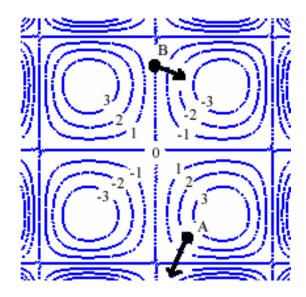
1. (24 points.) Let $f(x, y) = x^3 + 3xy^2$ and $g(x, y) = y^3 + 3x^2y$ Compute the following

a.
$$\frac{\partial}{\partial x} (f(x, y) + g(x, y)) =$$

b.
$$\frac{\partial}{\partial y} (f(x, y) - g(x, y)) =$$

c.
$$\nabla(2f(x,y)) =$$

2. Use the figure below to answer the following questions



- a) (3 points) What is the sign of the derivative at point A in the direction of the vector shown at A?
- b) (3 points) What is the sign of the derivative at point B in the direction of the vector shown at B?
- c) (6 points) Draw a vector in the direction of the gradient at point A
- d) (6 points) Draw a vector in the direction of the gradient at point B.

3. (18 points.) Find the derivative of $f(x,y) = \sqrt{9\cos(x) + 16y}$ at the point (x,y) = (0,1) in the direction (3,5)

4. (12 points.) A large metal plate is being chilled unevenly. The loss of heat causes each point (x, y) to have temperature T(x, y) measured in ${}^{\circ}F$. We know that T(0,1) = 5, $T_x(0,1) = 0$, and $T_y(0,1) = \frac{8}{5}$. Estimate the temperature at the point (0.02, 0.95)

5. (12 points) Let
$$z = \sqrt{x^2 + y^2}$$
, $x = e^{\theta}$, and $y = e^{-\theta}$. Use the chain rule to compute $\frac{dz}{d\theta}$

6. Let
$$z = x^2 - y^2$$
, $x = \frac{u + v}{2}$, and $y = \frac{u - v}{2}$.

a) (16 points) Use the chain rule to compute $\frac{\partial z}{\partial u}$

b) (16 points) Use the chain rule to compute $\frac{\partial z}{\partial v}$

c) (4 points) Compute $\nabla z(u, v)$

7. Let
$$f(x, y) = e^{x^2 + y^2}$$

a) (8 points) Find the critical points of f(x,y)

b) (16 points) Compute $f_{xy}(x, y)$ and $f_{yx}(x, y)$ and verify that $f_{xy}(x, y) = f_{yx}(x, y)$,

Extra credit Do not work on extra credit until you have finished the rest of the exam!

- A. (3 points) Draw a small circle around a saddle point in the contour diagram in problem 2
- **B.** (10 points) Show that wherever a level curve of $f(x, y) = \frac{y^2}{4x}$ intersects a level curve of $g(x, y) = 2x^2 + y^2$ the two curves are perpendicular to each other.