Name:_____

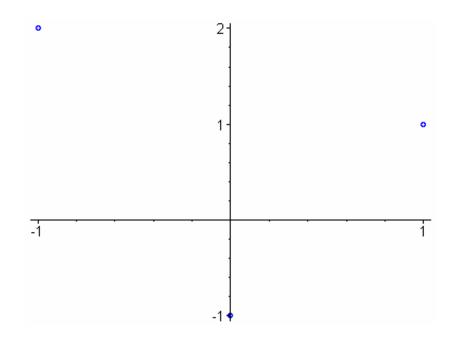
Vector Calculus

Exam 3

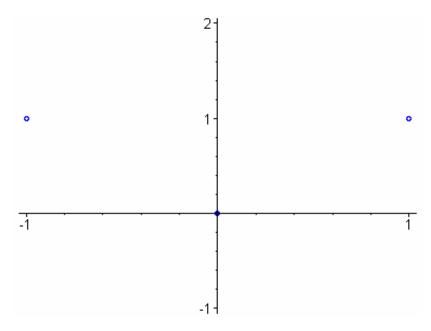
November 1st

There are 6 problems and 144 points total. The point value of each question is indicated. *Read each question carefully!*

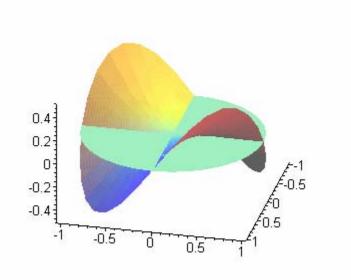
1. (24 points.) Compute the following iterated integrals

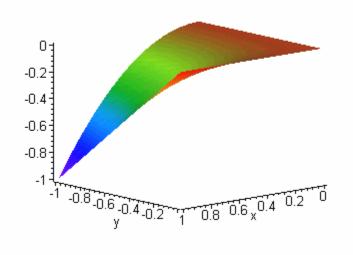

a) $\int_0^2 \int_0^3 x^2 + y^2 dy dx$

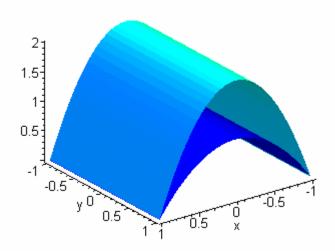
$$\mathbf{b} \quad \int_0^1 \int_0^1 e^{x+y} dx dy$$


c) $\int_0^1 \int_{-r^2}^{1-r^2} r d\theta dr$

d) $\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} 1 dx dy dz$


2. (24 points.) Compute the regression line with the form a + bx for the points (-1,2), (0,-1), (1,1) using least squares and draw the regression line in the figure.


3. (24 points.) Compute the regression line with the form a + bx for the points (-1,1), (0,0), (1,1) using least squares and draw the regression line in the figure.


4. (24 points.) Compute the double integral of the function f(x, y) = xy over the region $R = \{(x, y) : x^2 + y^2 \le 1\}$

5. (24 points.) Find the *volume* between the graph of the function $f(x, y) = x^2 y$ and the xy – plane over the region $R = \{(x, y) : 0 \le x \le 1, -1 \le y \le 0\}$

- 6. The region *W* is bounded on the top by $z = 2 2x^2$, on the bottom by $z = 1 x^2$, on the front by y = 1, and on the back y = -1.
 - a) (8 points) Express the volume of W as three iterated integrals.

b) (16 points) Compute the volume. of W using any method.

Extra credit Do not work on any of these until you have finished the rest of the exam!

A) (6 points) Compute $\int_0^1 \int_y^1 e^{-x^2} dx dy$

- **B)** (4 points) Notice in problems 2) and 3) that the mean of the *x* coordinates, \overline{x} , and the mean of the *y* coordinates, \overline{y} , gives us a point $(\overline{x}, \overline{y})$ which lies on the regression line. This is a general fact which is closely related to the fact that the axis of rotation for a rigid body must pass through its center of mass. Use this fact to create a *new* set of three points whose regression line has the same *y*-intercept as the point set in problem 2)
- C) (2 points) Is the volume in problem 5) larger or smaller than the volume in problem 6)?