There are 6 problems and 144 points total. The point value of each question is indicated. Read each question carefully!

1. (24 points.) Compute the following iterated integrals
a) $\int_{0}^{2} \int_{0}^{3} x^{2}+y^{2} d y d x$
b) $\int_{0}^{1} \int_{0}^{1} e^{x+y} d x d y$
c) $\int_{0}^{1} \int_{-r^{2}}^{1-r^{2}} r d \theta d r$
d) $\int_{p}^{q} \int_{c}^{d} \int_{a}^{b} 1 d x d y d z$
2. (24 points.) Compute the regression line with the form $a+b x$ for the points ($-1,2$), $(0,-1),(1,1)$ using least squares and draw the regression line in the figure.

3. (24 points.) Compute the regression line with the form $a+b x$ for the points $(-1,1),(0,0),(1,1)$ using least squares and draw the regression line in the figure.

4. (24 points.) Compute the double integral of the function $f(x, y)=x y$ over the region $R=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$

5. (24 points.) Find the volume between the graph of the function $f(x, y)=x^{2} y$ and the $x y$-plane over the region $R=\{(x, y): 0 \leq x \leq 1,-1 \leq y \leq 0\}$

6. The region W is bounded on the top by $z=2-2 x^{2}$, on the bottom by $z=1-x^{2}$, on the front by $y=1$, and on the back $y=-1$.
a) (8 points) Express the volume of W as three iterated integrals.

b) (16 points) Compute the volume. of W using any method.

Extra credit Do not work on any of these until you have finished the rest of the exam!
A) (6 points) Compute $\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y$
B) (4 points) Notice in problems 2) and 3) that the mean of the x coordinates, \bar{x}, and the mean of the y coordinates, \bar{y}, gives us a point (\bar{x}, \bar{y}) which lies on the regression line. This is a general fact which is closely related to the fact that the axis of rotation for a rigid body must pass through its center of mass. Use this fact to create a new set of three points whose regression line has the same y-intercept as the point set in problem 2)
C) (2 points) Is the volume in problem 5) larger or smaller than the volume in problem 6)?

