Instructions. Attempt all questions. Answers must be justified in order to gain full credit. Calculators are not permitted.
Time allowed: 1 hour

1. (4 points) Find angle $B A C$ if $A=(1,-1,2), B=(2,2,1)$, and $C=(0,3,1)$.
2. (5 points) Show that the vectors $(\vec{b} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{c}) \vec{b}$ and \vec{c} are orthogonal.
3. Let $P=(1,1,0), Q=(1,2,-1)$, and $R=(-2,2,1)$ be three point in \mathbb{R}^{3}.
(i) (5 points) Find the area of triangle $P Q R$
(ii) (5 points) Find an equation for the plane that contains the points P, Q and R.
4. Let $f(x, y)=4 x^{2}+y^{2}$.
(i) (4 points) Sketch a contour diagram for f with four labelled contours.
(ii) (2 points) Find the vertical cross-sections of f corresponding to $x=0$ and $y=0$.
(iii) (5 points) Use the information found in parts (i) and (ii) to sketch the graph of f.
5. (5 points) Find a formula for a function $f(x, y, z)$ whose level surface $f=3$ is a sphere of radius 4 , centered at the point $(-1,1,0)$.
6. (10 points) By approaching the origin $(0,0)$ along different paths, show that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4} y}{x^{6}+y^{3}}
$$

7. (5 points) Determine if there is a value for c making the function below continuous everywhere. If so, find it. If not, explain why not.

$$
f(x, y)= \begin{cases}c+y, & x \leq 3 \\ 5-y, & x>3\end{cases}
$$

