Instructions. Attempt all questions. Answers must be justified in order to gain full credit. Calculators are not permitted.

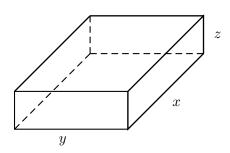
- 1. Let $f(x, y, z) = xe^y \sin z$.
 - (a) Find a vector at the point $(0,0,\pi/2)$ pointing in the direction in which f
 - (i) (4 points) Increases fastest (ii) (2 points
 - (ii) (2 points) Decreases fastest.
 - (b) (4 points) Is there a direction at the point $(0,0,\pi/2)$ in which the function does not change initially? If so, find a vector pointing in that direction.
- 2. (5 points) Find the directional derivative of $f(x,y,z)=xy+z^2$ at (1,1,1) in the direction of $\vec{i}+2\vec{j}+3\vec{k}$.
- 3. (4 points) Use the chain rule to find $\partial z/\partial u$ and $\partial z/\partial v$ where

$$z = \cos(x^2 + y^2)$$
 with $x = u \cos v$ and $y = u \sin v$

- 4. (4 points) Find the quadratic Taylor polynomial Q(x,y) about (0,0) for the function $f(x,y) = \ln(1+x^2-y)$.
- 5. Let

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

- (a) (5 points) Is f differentialable at all points $(x,y) \neq (0,0)$? Explain.
- (b) (5 points) Is f differentiable at (0,0)? Explain.
- 6. A closed rectangular box has volume 32 cm³.



- (a) (3 points) Find an expression for the surface area S(x,y) of the box.
- (b) (2 points) What is the domain of S?

Please Turn Over

- (c) (5 points) Find the critical point of S and use the second derivative test to classify it.
- (d) (2 points) Let $R=\{(x,y)\mid 1/3\leq x\leq 288 \text{ and } 1/3\leq y\leq 288\}$. Show that S(x,y) is greater than the value of S at the critical point found in part (c) for points (x,y) outside the rectangle R.
- (e) (5 points) Use part (d) and the extreme value theorem to explain why the critical point found in part (c) is a global minimum.