Instructions. Attempt all questions. Answers must be justified in order to gain full credit. Calculators are not permitted.

1. Let $f(x, y, z)=x e^{y}+\ln (x z)$.
(i) (5 points) Find the directional derivative of f at $(1,0,1)$ in the direction of $2 \vec{i}+2 \vec{j}+\vec{k}$.
(ii) (3 points) What is the direction of maximum rate of change of f at $(1,0,1)$?
2. (5 points) Show that the following limit does not exist:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

3. (6 points) Use the chain rule to find $\partial z / \partial u$ and $\partial z / \partial v$ where

$$
z=\tan (x+y) \quad \text { with } x=u \cos v \text { and } y=u \sin v
$$

4. (7 points) Find an equation for the tangent plane to the ellipsoid $x^{2}+2 y^{2}+4 z^{2}=4$ at the point $(1,1,-1 / 2)$.
5. (10 points) Use Lagrange multipliers to find the maximum value of $f(x, y)=x^{2}-x y+y^{2}$ subject to the constraint $x^{2}+y^{2}=1$.
6. (10 points) Evaluate the integral $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \sqrt{x^{4}+1} d x d y$ by reversing the order of integration.
7. (10 points) Find the volume of the region bounded by the plane $x+y+z=1$ and the three coordinate planes $x=0, y=0$, and $z=0$.
8. (7 points) Evaluate the double integral $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A$ where R is the region below.

9. (12 points) Use spherical coordinates to evaluate the triple integral $\iiint_{W}(1+x+y) d V$ where W is the region bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
10. (5 points) Decide if the vector field $\vec{F}(x, y, z)=\frac{1}{x} \vec{i}+\frac{1}{y} \vec{j}+\frac{1}{x y} \vec{k}$ is a gradient field. If so, find the potential function. If not, explain why not.
11. (10 points) Find $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y)=\ln y \vec{i}+\ln x \vec{j}$ and C is the curve $y=x^{3} / 8$ from $(4,8)$ to $(8,64)$.
12. (10 points) Use Green's theorem to find the line integral of $\vec{F}=3 y \vec{i}+x y \vec{j}$ around the unit circle oriented counterclockwise.
