Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 70 .

1. $(13$ pts: 7,6$) f(x, y)=\sqrt{16-4 x^{2}-y^{2}}$.
(a) Draw a contour map of f showing at least three level curves. Remember to label your axes and level curves.
(b) Find a vector function (or parametric equations) that represents the intersection curve of the graph $z=f(x, y)$ and the plane $x=1$.
2. (15 pts: $2,2,5,3,3$) Consider the plane $\Pi: 2 x-y+3 z=0$ and the vector $\vec{v}=<2,-2,4\rangle$.
(a) Find a normal vector \vec{n} to the plane Π.
(b) Does the plane π pass through the origin? Why?
(c) Find $\operatorname{proj}_{\vec{n}} \vec{v}$, the vector projection of \vec{v} onto \vec{n} from part (a). (If you cannot solve part (a), use $\vec{n}=<1,0,3>$.)
(d) Find the distance between the point $(2,-2,4)$ and the plane Π.
(e) What can you say about the direction of $\vec{v}-\operatorname{proj}_{\vec{n}} \vec{v}$?
3. (15 pts: 5 each) In a contour map of the function $f(x, y)$, the point $(0,2)$ lies on the level curve $f(x, y)=5$. We also know that $f_{x}(0,2)=-3$ and $f_{y}(0,2)=4$.
(a) Find the direction in which $f(x, y)$ increases fastest at $(0,2)$, and find the maximum rate of increase.
(b) Find one tangent vector to the level curve $f(x, y)=5$ at $(0,2)$.
(c) Find an equation of the tangent plane to the graph $z=f(x, y)$ at the point above $(0,2)$.
4. (15 pts: 10,5) Consider the function $f(x, y)=x-x^{2}-y^{2}$.
(a) Find and classify all critical points of $f(x, y)$.
(b) Find the absolute maximum and absolute minimum values of $f(x, y)$ over $D=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
5. (12 pts: 3 each) Answer the following questions in no more than two lines of text.
(a) Is it possible for a function f to have $f_{x}(x, y)=3 x^{2}-y$ and $f_{y}(x, y)=x^{3}-1$ as partial derivatives? Explain why.
(b) Write down a vector function $\vec{r}(t)$ (or parametric equations) for a space curve whose curvature is zero everywhere.
(c) If $B(s, r)$ is the price of burritos, s the price of beans and r the price of rice, what is the meaning of $\partial B / \partial s$?
(d) If you know that $\lim _{x \rightarrow 0} f(x, m x)=\lim _{x \rightarrow 0} f\left(x, k x^{2}\right)=2$, what can you conclude about $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?
