Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100.

- 1. (20 pts) Consider the domain R in the xy-plane such that $0 \le y \le 1$ and $0 \le x \le 2$ and $x^2 + y^2 \ge 4$.
 - (a) Draw this domain.
 - (b) Setup 2 integrals to evaluate the volume between a function f(x, y) > 0 and the plane z = 0 over R, one integrating x first and the other integrating y first.
 - (c) Evaluate the volume above R and below the surface z = xy.
- 2. (18 pts) A drill bit is shaped like the inside of the cone $z^2 = x^2 + y^2$ for $0 \text{cm} \le z \le 2 \text{cm}$. Write down an integral describing the mass of this drill bit if its density is $d(x,y,z) = \frac{300}{x^2 + y^2 + 2z^2 + 100}$ g/cm³ in **TWO** of the following THREE coordinate systems.
 - (a) Cartesian coordinates.
 - (b) Cylindrical coordinates.
 - (c) Spherical coordinates.
- 3. (20 pts) Consider the force field $\vec{F}(x,y) = 1/x \ \vec{i} + 2/y \ \vec{j}$ and the curve C, a parabola going from (1,1) to (3,9) via the point (2,4)
 - (a) Compute the work of $\vec{F}(x,y)$ done on a particle traveling along C by parametrizing the curve.
 - (b) Find the potential $\phi(x,y)$ such that $\nabla \phi = \vec{F}$ and use it to verify your answer to part a).
 - (c) Could you use Green's theorem to find the work done by \vec{F} on a particle going counterclockwise around the circle of radius 1 centered at the origin? Justify your answer.
- 4. (18 pts) Consider the lower half of the sphere of radius 2m centered at the origin
 - (a) Parametrize the surface described above.
 - (b) Compute the flux of $\vec{F} = (1/x \vec{i} + 3/y \vec{j} + x^2 \vec{k})$ m/min through the half sphere oriented outward.
 - (c) Assume the flux of \vec{F} through a surface S is $2\text{m}^3/\text{s}$. If the surface describes a gold-digger's pan and \vec{F} is the velocity of water containing 0.001 ounces of gold per meter cubed, how long would it take to gather 4 ounces of gold?
- 5. (24 pts) Answer the following questions in no more than two lines of text or formulas (much less is usually needed if you are right on point).
 - (a) What is a formula for the average height of a surface z = f(x, y) over a domain R in the xy-plane?
 - (b) If d(x,y) is the density of fairy shrimp per unit length of a waterway, what does $\int_C d(x,y)dl$ represent if C is the path of the waterway?
 - (c) For a given velocity field $\vec{F}(x,y,z)$, how would you orient a surface S to maximize the flux through that same surface?
 - (d) Sketch or describe a 2-dimensional vector field, \vec{F} , for which curl $\vec{F} = 0$ inside the circle of radius 1 centered at the origin and curl $\vec{F} = -1$ everywhere else.
 - (e) Sketch or describe the curve parametrized by

$$x = t,$$
 $y = e^{-t}\cos t,$ $z = e^{-t}\sin t$

for $0 \le t \le \infty$.

(f) If $\vec{r}(s,t) = x(s,t) \vec{i} + y(s,t) \vec{j} + z(s,t) \vec{k}$, is the parametrization of a certain surface, what can you say about the length and direction of the vector $(\vec{r}_t \times \vec{r}_s) \Delta s \Delta t$?