Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100 .

1. (20 pts) Consider the domain R in the $x y$-plane such that $1 \leq x \leq 2+\cos y$ and $0 \leq y \leq \pi$.
(a) Draw this domain.
(b) Set up 2 integrals to evaluate the volume between a function $f(x, y)>0$ and the plane $z=0$ over R : one integrating x first and the second integrating y first.
(c) Evaluate the volume above R and below the surface $z=e^{x} \sin y$.
2. (18 pts) A spherical orange of radius 4 cm and with center at the origin, is sliced in eight equal parts by cutting it vertically along the x and y axis and along the planes $y=x$ and $y=-x$. Write the integral you would use to compute the mass of the slice of orange between the $y=x$ plane and the y-axis if the density of the orange is $d(x, y, z)=0.5+0.2\left(x^{2}+y^{2}\right) /\left(z^{2}+1\right)$.
(a) In cylindrical coordinates.
(b) In spherical coordinates.
3. (20 pts) Consider the vector field $\vec{F}=x^{2} y^{3} \vec{i}+0 \vec{j}$ and the curve C describing the boundary of a square of side 2 centered at the origin with sides parallel to the axes.
(a) Compute the line integral of \vec{F} over C by parametrizing the curve.
(b) Can you use Green's theorem to compute this line integral? Why or why not?
(c) If you can use Green's theorem, do so, if not suggest a simple modification to the problem that would allow you to use it.
4. (18 pts) Consider the cylinder of radius 3 centered on the x-axis for $0 \leq x \leq 2$.
(a) Draw the cylinder and parametrize its surface.
(b) Compute the flux of $\vec{F}=y z \vec{i}+x y \vec{j}+x z \vec{k}$ into that cylinder.
(c) If \vec{F} describe the velocity field of flowing water in m / s and the cylinder has radius 3 m , what does the previous calculation describe, in non-mathematical terms?
5. (24 pts) Answer the following questions in no more than two lines of text (much less is usually needed if you are right on point).
(a) If a vector field \vec{F} is such that its circulation around any closed loop is 0 , what can you say about the line integral between two points $P=\left(x_{0}, y_{0}\right)$ and $Q=\left(x_{1}, y_{1}\right)$ along a straight line compared to that between the same points along a path twice a long?
(b) When do you use the Jacobian $\frac{\partial(x, y)}{\partial(s, t)}$ of a transformation $x(s, t)$ and $y(s, t)$ from the (x, y) coordinates to the (s, t) coordinates?
(c) Describe or sketch the surface parametrized by $x=s, y=s \sin t, z=s \cos t$.
(d) If \vec{F} is the velocity field of the wind and the air contains 0.1 grams of pollen per meter cubed, how much pollen would you find in a surface S after 30 minutes if $\iint_{S} \vec{F} \cdot \vec{n} d A=6 \mathrm{~m}^{3} / \mathrm{min}$?
(e) Find a 3-dimensional vector field $\vec{F}(x, y, z)$ where each vector has length 2 and points towards the point $(2,3,4)$ (except at $(2,3,4)$ where $\vec{F}(2,3,4)=0 \vec{i}+0 \vec{j}+0 \vec{k})$.
(f) Write a formula to compute the average value of $g(x, y, z)$ over a three dimensional domain V.
