Duration: 180 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100.

- 1. (20 pts) Answer the following questions in no more than two lines of text or formulas (much less is usually needed if you are right on point).
 - (a) How do you verify that two vectors \vec{v} and \vec{w} are perpendicular?
 - (b) If $\vec{c} = \vec{a} \times \vec{b}$, what can you say about the length and direction of \vec{c} ?
 - (c) Give two properties of the gradient ∇f of a function f(x, y, z).
 - (d) Sketch, name or describe a function that is discontinuous at the origin and a function that is continuous but not differentiable at the origin.
 - (e) If a contour of f(x,y) is given by $y^2 + x^3 = 1$, find a point where f(x,y) = f(0,1) (other than (0,1), of course).
 - (f) How would you verify whether a vector field \vec{F} is a gradient field (conservative) or not?
 - (g) If S is a surface and \vec{F} a vector field, when can you use the divergence theorem directly to calculate the flux of \vec{F} through S?
 - (h) Sketch or describe in words a vector field with a positive curl everywhere (a formula is not sufficient)4
 - (i) Give a parametrization of the line going from (-1, -1, 3) to (0, 1, 4).
 - (j) Which of the following are vectors?
 - (i) A velocity field (\vec{u})

- (ii) $\vec{a} \cdot \vec{b}$
- (iii) The divergence of a velocity field ($\operatorname{div} \vec{F}$)
- (iv) $\vec{a} \times \vec{b}$
- (v) The curl of a three dimensional velocity field (curl \vec{F})
- (vi) The gradient of a function (∇f)
- 2. (9 pts) Given the implicit function $z^2 + 9x^2 + y^2/4 = 1$
 - (a) Draw at least 2 cross-sections of this surface by keeping *x* fixed (specify the value of *x*).
 - (b) Draw at least 2 contours.
 - (c) **SKETCH** the surface in a manner consistent with what you found above.
- 3. (8 pts) Consider the following three points in space $m_1 = (-1, 0, 2)$, $m_2 = (1, 4, 2)$ and $m_3 = (0, 2, 1)$
 - (a) Find the vectors \vec{v}_1 going from m_1 to m_2 and \vec{v}_2 going from m_1 to m_3 .
 - (b) Using \vec{v}_1 and \vec{v}_2 , find the equation of the plane going through these three points.
- 4. (9 pts) Above the point (-1,2) in the xy-plane, the plane tangent to the function f(x,y) = xy is labeled p(x,y).
 - (a) What is p(-1, 2)?
 - (b) What is the equation of p(x, y)?
 - (c) If x and y are functions of time $x(t) = -t^2$ and $y(t) = 2\cos(t-1)$, use the chain rule to compute $\frac{df}{dt}$ at t = 1.

SEE BACK

- 5. (9 pts) Consider the function $f(x,y) = 2xy^2 x^2 32y$.
 - (a) Find **AND** classify all the critical points of f(x, y).
 - (b) How would you determine if f(x, y) has a global maximum over $D = \{\text{all } x \le -2 \text{ and all } y \ge 1\}$?
- 6. (10 pts) Consider the domain R in the xy-plane such that $0 \le y \le 4$ and $0 \le x \le 2$ and $y \le x^2$.
 - (a) Draw this domain.
 - (b) Set up 2 integrals to evaluate the volume over R between **TWO** functions f(x,y) and g(x,y), with f(x,y) > g(x,y), one integrating x first and the other integrating y first.
 - (c) Evaluate the volume above R and between the surfaces z = xy and z = -1.
- 7. (8 pts) The bottom of a silo is shaped like the cylinder $x^2 + y^2 = 9$ for $-3 \le z \le 0$ and the cap of the silo is a the half-sphere $x^2 + y^2 + z^2 = 9$ for $z \ge 0$. The density of the grain inside the silo is $d(x, y, z) = 1 + x^2 z / 10$.
 - (a) Find an integral expression (do not evaluate) for the mass of grain in the silo:
- 8. (9 pts) Consider the force field $\vec{F}(x,y) = (8xy)\vec{i} + (3y^2 + 2x)\vec{j}$ and the curve C, which is the **LOWER** half of the ellipse $4x^2 + y^2 = 1$ oriented in counter-clockwise direction.
 - (a) Compute the work of $\vec{F}(x,y)$ done on a particle traveling along C by parametrizing the curve.
 - (b) By symmetry, the work on the lower part of the ellipse is half of the work done by a particle going all the way around the ellipse. Use Green's theorem to set up (but not evaluate) an integral for the work in part a).
- 9. (10 pts) Consider the surface S given by $z=xy^2$ over the region $-1 \le x \le 0$ and $0 \le y \le 2$ and oriented with its normal pointing up.
 - (a) Parametrize the surface described above.
 - (b) Compute the flux of $\vec{F} = (x^2/z \ \vec{i} + z/2 \ \vec{j} + z/y^2 \ \vec{k})$ m/s through S.
 - (c) What would be the flux through the same surface oriented with its normal pointing down? (if you didn't solve part b), assume the answer was 1.32)
 - (d) If the units of x and y are in meters, what are the units of the flux through S?
- 10. (8 pts) Consider the surface S of a filter given by part of a cone $z=\sqrt{3(x^2+y^2)}$ (of apex angle $\pi/3$) restricted to $0 \le z \le \sqrt{3}$. The velocity field of air flowing through the filter is: $\vec{F} = (\sin y 2xz)\vec{i} + (e^x e^z + y)\vec{j} + (z^2 + 1)\vec{k}$
 - (a) Explain how you could use the divergence theorem to compute the flux through S oriented with its normal pointing outward.
 - (b) Use the divergence theorem to compute the flux through S as you explained in a).

HAVE A GOOD SUMMER!!