Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 50 .

1. (10 points: 5 each) Given two vectors $\vec{u}=\vec{i}-2 \vec{j}+3 \vec{k}$ and $\vec{v}=\vec{j}+2 \vec{k}$.
(a) Find an equation of the plane which is parallel to both \vec{u} and \vec{v} and goes through the point $(2,5,3)$.
(b) Decompose \vec{u} into two vectors \vec{a} and \vec{b} such that $\vec{u}=\vec{a}+\vec{b}$, with \vec{a} parallel to \vec{v} and \vec{b} perpendicular to \vec{v}.
2. (15 points: 5 each)
(a) Find parametric equations that represent the curve of intersection of the cylinder $x^{2}+y^{2}=9$ and the plane $y+z=1$.
(b) Find the arc length of the helix $\vec{r}(t)=<\sin 3 t, 4 t, \cos 3 t>, 0 \leq t \leq 2$.
(c) Find parametric equations for the tangent line to the helix in part (b) at the point $(0,0,1)$.
3. (15 points total) Consider the function $f(x, y)=\sqrt{x^{2}+4 y^{2}-4}$.
(a) (5 points) Draw a contour map of f showing at least 3 level curves. Remember to label your axes and level curves.
(b) (2 points) Draw 2 vertical traces of the graph $z=f(x, y)$, one with $x=0$ and the other with $y=0$.
(c) (3 points) Sketch the graph $z=f(x, y)$ showing your level curves and traces in parts (a) and (b).
(d) (5 points) Calculate $f_{x}(1,1)$ and $f_{y}(1,1)$.
4. (10 points: 2 each) Answer the following questions in no more than two lines of text.
(a) A vector function $\vec{r}(t)$ represents a space curve. If we know that $\left|\frac{d \vec{r}}{d t}\right|=1$ for all t, what is the geometric significance of the parameter t other than time?
(b) Is it true that if $\vec{u} \times \vec{v}=0$ then either $\vec{u}=\overrightarrow{0}$ or $\vec{v}=\overrightarrow{0}$? Explain why.
(c) How can you show that $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.
(d) Give an example of a function $f(x, y)$ and a point $(a . b)$ such that $f_{x}(a, b)$ and $f_{y}(a, b)$ both exist but f is not even continuous at (a, b). You may describe your example using formulas, pictures or words.
(e) What is the length of the sum of two perpendicular unit vectors?
