Duration: 50 minutes

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 50.

- 1. (10 points: 5 each) Given two vectors $\vec{u} = \vec{i} 2\vec{j} + 3\vec{k}$ and $\vec{v} = \vec{j} + 2\vec{k}$.
 - (a) Find an equation of the plane which is parallel to both \vec{u} and \vec{v} and goes through the point (2, 5, 3).
 - (b) Decompose \vec{u} into two vectors \vec{a} and \vec{b} such that $\vec{u} = \vec{a} + \vec{b}$, with \vec{a} parallel to \vec{v} and \vec{b} perpendicular to \vec{v} .
- 2. (15 points: 5 each)
 - (a) Find parametric equations that represent the curve of intersection of the cylinder $x^2 + y^2 = 9$ and the plane y + z = 1.
 - (b) Find the arc length of the helix $\vec{r}(t) = < \sin 3t, 4t, \cos 3t >, 0 \le t \le 2$.
 - (c) Find parametric equations for the tangent line to the helix in part (b) at the point (0, 0, 1).
- 3. (15 points total) Consider the function $f(x, y) = \sqrt{x^2 + 4y^2 4}$.
 - (a) (5 points) Draw a contour map of *f* showing at least 3 level curves. Remember to label your axes and level curves.
 - (b) (2 points) Draw 2 vertical traces of the graph z = f(x, y), one with x = 0 and the other with y = 0.
 - (c) (3 points) Sketch the graph z = f(x, y) showing your level curves and traces in parts (a) and (b).
 - (d) (5 points) Calculate $f_x(1,1)$ and $f_y(1,1)$.
- 4. (10 points: 2 each) Answer the following questions in no more than two lines of text.
 - (a) A vector function $\vec{r}(t)$ represents a space curve. If we know that $\left|\frac{d\vec{r}}{dt}\right| = 1$ for all *t*, what is the geometric significance of the parameter *t* other than time?
 - (b) Is it true that if $\vec{u} \times \vec{v} = 0$ then either $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$? Explain why.
 - (c) How can you show that $\lim_{(x,y)\to(a,b)} f(x,y)$ does not exist.
 - (d) Give an example of a function f(x, y) and a point (a.b) such that $f_x(a, b)$ and $f_y(a, b)$ both exist but f is not even continuous at (a, b). You may describe your example using formulas, pictures or words.
 - (e) What is the length of the sum of two perpendicular unit vectors?