Duration: 3 hours

Instructions: Answer all questions, without the use of notes, books or calculators. Partial credit will be awarded for correct work, unless otherwise specified. The total number of points is 100.

- 1. (20 pts: 2 each) Answer the following questions in no more than two lines of text or formulas (much less is usually needed if you are right on point).
 - (a) Given vectors \vec{a} and \vec{b} , describe in words, not formulas, the direction and magnitude of $\vec{a} \times \vec{b}$.
 - (b) If you know that $\lim_{x\to 0} f(x, mx) = \lim_{x\to 0} f(x, kx^2)$, what can you conclude about $\lim_{(x,y)\to(0,0)} f(x,y)$?
 - (c) At a given point, the gradient of f(x,y) is $\nabla f = \vec{i} + \vec{j}$. In what direction would you have to move if you want to maintain a constant value of f(x,y)?
 - (d) What is a formula for the average height of a surface z=f(x,y) over a domain R in the xy-plane?
 - (e) Given a vector function $\vec{r}(t)$ describing a space curve, how do you check whether or not t represents arc length?
 - (f) If a level surface of f(x, y, z) is given by $y^3 + x z^2 = 1$, find a point where f(x, y, z) = f(1, 0, 0) other than (1, 0, 0).
 - (g) When we change from rectangular coordinates (x, y, z) to spherical coordinates (ρ, ϕ, θ) , what is the Jacobian?
 - (h) Describe or sketch the parametrized surface $x = 2\cos\theta$, y = t, $z = 2\sin\theta$.
 - (i) If S is a sphere and \vec{F} is a vector field whose components have continuous partial derivatives on \mathbb{R}^3 , why is $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S} = 0$?
 - (j) Sketch or describe in words a vector field with a positive curl everywhere (a formula is not sufficient).
- 2. (7 pts) Given the vector $\vec{n} = 2\vec{i} \vec{j} + \vec{k}$,
 - (a) Find an equation of the plane perpendicular to \vec{n} and going through the point (0,2,4).
 - (b) Decompose the vector $\vec{v} = -\vec{j} + \vec{k}$ into two parts \vec{a} and \vec{b} such that $\vec{v} = \vec{a} + \vec{b}$, with \vec{a} parallel to \vec{n} and \vec{b} perpendicular to \vec{n} .
- 3. (9 pts) Consider the function $f(x, y) = 9x^2 + y^2 1$.
 - (a) Draw a contour map of *f* showing at least 3 level curves. Remember to label your axes and level curves.
 - (b) Draw 2 vertical traces of the graph z = f(x, y), one with x = 0 and the other with y = 0.
 - (c) Sketch the graph z = f(x, y) showing your level curves and traces in parts (a) and (b).

- 4. (9 pts) Consider the function $f(x, y) = e^{2x} \sin y$.
 - (a) In which direction does f(x, y) decrease the fastest at $(0, \pi/4)$?
 - (b) Find the directional derivative of f in the direction of <1, -1> at $(0, \pi/4)$.
 - (c) If x and y depend on another variable u: $x(u) = u^3$ and $y(u) = \pi/4 + 3u$, compute $\frac{df}{du}$ at u = 0.
- 5. (9 pts) Consider the function $f(x, y) = x^2 y + y^2$.
 - (a) Find and classify all critical points of f(x, y).
 - (b) Find the absolute maximum and absolute minimum values of f(x,y) over $D = \{(x,y) | x^2 + y^2 \le 1\}.$
- 6. (10 pts) Consider the parametric curve

$$C: \quad x = \sin t, \qquad y = t, \qquad z = \cos t.$$

- (a) Find parametric equations of the tangent line to the curve C at the point (0,0,1).
- (b) Evaluate the line integral of $\vec{F}(x,y,z) = z\vec{i} + y\vec{j} x\vec{k}$ along C from (0,0,1) to $(0,\pi,-1)$.
- 7. (7 pts) Consider $\vec{F}(x,y) = (1 ye^{-x})\vec{i} + (e^{-x} + 5)\vec{j}$.
 - (a) Find a function f such that $\vec{F} = \nabla f$.
 - (b) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is any path from (0,1) to (1,2).
- 8. (11 pts) D is a triangular region in the xy-plane with vertices (0,0), (1,0), and (1,2).
 - (a) Set up **two** iterated integrals to evaluate $\iint_D f(x,y) dA$, one integrating x first and the other integrating y first.
 - (b) Use Green's Theorem to evaluate $\oint_C (e^y + \cos x) \ dx + (3x^2y + xe^y) \ dy$ where C is the boundary of D oriented counterclockwise.
 - (c) Is $\vec{F}(x,y,z) = (e^y + \cos x)\vec{i} + (3x^2y + xe^y)\vec{j}$ a conservative field? Why or why not?
- 9. (9 pts) Let S be part of the paraboloid $z=4-x^2-y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation. Find the flux of $\vec{F}(x,y,z) = y\vec{i} x\vec{j} + z\vec{k}$ across S.
- 10. (9 pts) Let S be the surface of the solid E bounded by the cone $z=\sqrt{(x^2+y^2)}$ and the plane z=3 oriented outward. Use the divergence theorem to calculate the flux of $\vec{F}(x,y,z)=(\sin y-2xz)\vec{i}+(e^x-e^z+y)\vec{j}+(z^2+1)\vec{k}$ across S.

HAVE A GOOD SUMMER!!