## Math 24

Exam 1: February 15, 2006
ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. This exam is closed-book and no calculators are allowed. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. (a) Match the following differential equations (1)-(4) with their corresponding direction fields $\mathrm{A}-\mathrm{D}$.
(1) $\frac{d y}{d t}=y+\sin (y)$,
(2) $\frac{d y}{d t}=+\sqrt{|y|}-1$,
(3) $\frac{d y}{d t}=-\frac{t^{2}}{y}$,
(4) $\frac{d y}{d t}=t y$.
(b) Do equations (1)-(4) have any equilibrium solutions? If so, find the equilibrium solutions for each equation.

2. Classify the following equations as (1) linear or nonlinear, and (2) separable or non-separable. Then solve these equations.
(a) $\sin (t) y^{\prime}+\cos (t) y=1$.
(b) $y^{\prime}=\frac{t(t+1)}{y^{2}}$.
3. Consider the equation

$$
y^{\prime}=2 y^{2}\left(y^{2}-a^{2}\right),
$$

where $a$ is a positive constant $(a>0)$.
(a) Find the equilibrium solutions.
(b) Sketch the phase lines and direction fields.
(c) Determine the stability of the equilibrium solutions.
(d) Find the limiting value of $y(t)$ as $t \rightarrow \infty$ when $y(0)=\frac{a}{2}$. Justify your answer.
4. Determine whether the following statements are TRUE or FALSE. Note: you must write the entire word TRUE or FALSE. You do not need to show your work for this problem.
(a) $y(x)=x \cos (x)$ is a solution of the IVP

$$
y^{\prime}-\frac{y}{x}=-x \sin (x), \quad y(0)=0
$$

(b) Picard's theorem guarantees the local existence and uniqueness of a solution to the IVP

$$
\frac{d y}{d x}=\tan ^{-1}(y), \quad y(0)=c
$$

for all values of $c$.
5. Solve the equation

$$
\frac{d y}{d t}-\frac{y}{t}=\left(\frac{y}{t}\right)^{2} .
$$

Hint: since this is an Euler-homogeneous equation, you can use $v=\frac{y}{t}$ to transform it into a separable equation. Alternatively, since this is also a Bernoulli equation, you can use $v=y^{-1}$ to transform it into a linear equation.

## THE END

