Math 24

Exam 1: February 15, 2006
ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. This exam is closed-book and no calculators are allowed. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. (a) Match the following differential equations (1)-(4) with their corresponding direction fields $\mathrm{A}-\mathrm{D}$.
(1) $\frac{d y}{d t}=y+\sin (y)$,
(2) $\frac{d y}{d t}=+\sqrt{|y|}-1$,
(3) $\frac{d y}{d t}=-\frac{t^{2}}{y}$,
(4) $\frac{d y}{d t}=t y$.
(b) Do equations (1)-(4) have any equilibrium solutions? If so, find the equilibrium solutions for each equation.

SOLUTION:

(a) $(1, \mathrm{~B}),(2, \mathrm{D}),(3, \mathrm{~A}),(4, \mathrm{C})$
(b) Equation 1: $y=0$; Equation 2: $y= \pm 1$; Equation 3: none; Equation 4: $y=0$;
2. Classify the following equations as (1) linear or nonlinear, and (2) separable or non-separable. Then solve these equations.
(a) $\sin (t) y^{\prime}+\cos (t) y=1$.
(b) $y^{\prime}=\frac{t(t+1)}{y^{2}}$.

SOLUTION:

(a) This is a non-separable linear equation with the standard linear form $y^{\prime}+\frac{\cos (t)}{\sin (t)} y=$ $\frac{1}{\sin (t)}$. This yields the integrating factor $\mu(t)=e^{\int \frac{\cos (t) d t}{\sin (t)}}=e^{\ln |\sin (t)|}=\sin (t)$. After multiplication by $\mu(t)$ we get back the original equation - which can be written in the form $\frac{d[\sin (t) y]}{d t}=1$. Integrating, we have $\sin (t) y=t+c$ or $y(t)=\frac{t+c}{\sin (t)}$.
(b) This is a nonlinear separable equation. Separating variables and integrating $\int y^{2} d y=$ $\int\left(t^{2}+t\right) d t$ yields $\frac{y^{3}}{3}=\frac{t^{3}}{3}+\frac{t^{2}}{2}+c$, or $y(t)=t^{3}+1.5 t^{2}+c$.
3. Consider the equation

$$
y^{\prime}=2 y^{2}\left(y^{2}-a^{2}\right),
$$

where a is a positive constant $(a>0)$.
(a) Find the equilibrium solutions.
(b) Sketch the phase lines and direction fields.
(c) Determine the stability of the equilibrium solutions.
(d) Find the limiting value of $y(t)$ as $t \rightarrow \infty$ when $y(0)=\frac{a}{2}$. Justify your answer.

SOLUTION:

(a) First, it helps to rewrite the equation as $y^{\prime}=2 y^{2}(y+a)(y-a)$. It follows that the equilibrium solutions are $y=0, \pm a$.

(b)
(c) $y=-a$ is stable, $y=+a$ is unstable, and $y=0$ is semi-stable (stable from above and unstable from below).
(d) Since the equilibrium solution $y=a$ is unstable and $y=0$ is stable from above, the solution with $y(0)=\frac{a}{2}$ will approach $y=0$ for long time. Note that the solution cannot "pass through" $y=0$, since that would violate the uniqueness property of this IVP.
4. Determine whether the following statements are TRUE or FALSE. Note: you must write the entire word TRUE or FALSE. You do not need to show your work for this problem.
(a) $y(x)=x \cos (x)$ is a solution of the IVP

$$
y^{\prime}-\frac{y}{x}=-x \sin (x), \quad y(0)=0 .
$$

(b) Picard's theorem guarantees the local existence and uniqueness of a solution to the IVP

$$
\frac{d y}{d x}=\tan ^{-1}(y), \quad y(0)=c,
$$

for all values of c.

SOLUTION:

(a) TRUE

(b) TRUE. Here $f(t, y)=\tan ^{-1}(y)$ is continuous for all values of (t, y), hence the solution exists for all values of c. In addition, $\frac{d f}{d y}=\frac{1}{1+y^{2}}$ is also continuous for all values of (t, y), hence the solution is unique for all values of c.
Note: The fact that $\tan ^{-1}(y)$ is bounded between $-\pi / 2$ and $\pi / 2$ should not be confused with the initial condition being any value of $y(0)!!$ If you are still confused, look at the direction field below and convince yourself that (1) there are no singularity points and (2) the slopes reach $\pm \pi / 2 \approx \pm 1.6$ on the top and bottom.

5. Solve the equation

$$
\frac{d y}{d t}-\frac{y}{t}=\left(\frac{y}{t}\right)^{2} .
$$

Hint: since this is an Euler-homogeneous equation, you can use $v=\frac{y}{t}$ to transform it into a separable equation. Alternatively, since this is also a Bernoulli equation, you can use $v=y^{-1}$ to transform it into a linear equation.

SOLUTION:

(a) As an Euler-homogeneous equation define $v=\frac{y}{t}$. Then $y=v t$, so $y^{\prime}=v^{\prime} t+v$. Substituting this into the equation yields $\left(v^{\prime} t+v\right)-v=v^{2}$ or $v^{\prime}=\frac{v^{2}}{t}$. Separating variables we get

$$
\frac{d v}{v^{2}}=\frac{d t}{t}
$$

Integrating, we have

$$
-\frac{1}{v}=\ln (t)+c
$$

Therefore, $v=\frac{1}{c-\ln (t)}$ and $y=v t=\frac{t}{c-\ln (t)}$.
(b) As a Bernoulli equation you can divide by y^{2} to get

$$
y^{-2} \frac{d y}{d t}-\frac{1}{y t}=\frac{1}{t^{2}} .
$$

Defining $v=y^{-1}$ and using the chain rule we have $\frac{d v}{d t}=-\frac{y^{\prime}}{y^{2}}$. Transforming the equation from y to v yields

$$
-\frac{d v}{d t}-\frac{v}{t}=\frac{1}{t^{2}}
$$

which is linear equation in v, whose standard form is

$$
\frac{d v}{d t}+\frac{v}{t}=-\frac{1}{t^{2}}
$$

Multiplying by the integrating factor $\mu(t)=t$ gives

$$
\frac{d(t v)}{d t}=-\frac{1}{t}
$$

After integrating we get $v(t)=\frac{c-\ln (t)}{t}$ and, therefore, $y(t)=\frac{t}{c-\ln (t)}$.

THE END

