MATH 24 - EXAM 2

ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. This exam is closed-book and no calculators are allowed. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. Consider the linear system

$$2x - 10z = 0$$

$$y + 2z = 1$$

$$-4x + 3y + 26z = 3$$

- (a) Write this system in the augmented form $[A|\mathbf{b}]$.
- (b) Using the determinant, determine whether the system has a unique solution.
- (c) Solve this system using Gauss Elimination (RREF).
- (d) What is the span of the solutions (point, line, plane, ...) and what is its dimension?

2. Let
$$A = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.

- (a) Calculate AA^T .
- (b) Find A^{-1} .
- (c) Solve $A\mathbf{x} = \mathbf{b}$ when $\theta = \frac{\pi}{2}$.
- (d) Which of the following products are defined: (i) $A\mathbf{b}$, (ii) $\mathbf{b}A$, (iii) $A^T\mathbf{b}^T$, (iv) \mathbf{b}^TA , (v) $\mathbf{b}^T\mathbf{b}$? Note: you do not need to calculate these products.
- 3. Consider the following system of equations in augmented form

$$[A|\mathbf{b}] = \begin{bmatrix} k & -2 & | & 1\\ 2 & -k & | & -1 \end{bmatrix}$$

- (a) For which values of k does this system have a unique solution?
- (b) Determine the number of solutions of this system for all values of k.
- (c) <u>Define</u> the properties of a basis of a vector space. Explain whether the column vectors of A form a basis of \mathbb{R}^2 when (i) k = 0 and (ii) k = 2.

4. Determine whether the following statements are TRUE or FALSE. <u>Note:</u> you must write the <u>entire</u> word TRUE or FALSE. You do <u>not</u> need to show your work for this problem.

(a) The RREF of $A = \begin{bmatrix} 2 & -1 & 3 & 0 \\ 0 & 10 & 0 & 1 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & -3 \end{bmatrix}$ is the identity matrix.

- (b) The vectors $\{[-3,1], [2,-3], [2,1]\}$ span \mathbb{R}^2 .
- (c) The vectors $\{[-3,1], [2,-3], [2,1]\}$ form a basis of \mathbb{R}^2 .
- (d) The functions $\{t^2, t^2 + 1, t^2 + 3t + 1, t + 4\}$ are linearly independent.
- (e) The set of solutions of the equation $x^2y'' + xy' y = 0$ forms a vector space.
- 5. Consider the differential equation y'' + y' 6y = 0.
 - (a) Find the characteristic equation and its roots.
 - (b) What is the general solution of this differential equation?
 - (c) Solve the equation when y(0) = 0 and y'(0) = 5.
 - (d) What is the long time behavior of the solution?

THE END