ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. This exam is closed-book and no calculators are allowed. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. Consider the equation

$$y'' + \omega_0^2 y = \cos \omega_1 t \; .$$

- (a) Find the general solution of the homogeneous equation.
- (b) Find the particular solution of the non-homogeneous equation using the method of <u>Undetermined Coefficients</u> assuming that $\omega_1 \neq \omega_0$.
- (c) What is the suitable guess for the particular solution if $\omega_1 = \omega_0$?
- (d) Suppose $\omega_1 > \omega_0$, but as time evolves, ω_1 is getting closer and closer to ω_0 . What happens to the qualitative behavior of the solution in this process? Is this change of behavior consistent with your answer to part (c)?
- 2. Consider the equation

$$y'' - 2y' + y = \frac{e^t}{t} \ .$$

- (a) Find the general solution of the homogeneous equation.
- (b) Find the Wronskian of the fundamental solutions of the homogeneous equation.
- (c) Find the particular solution of the non-homogeneous equation using the method of <u>Variation of Parameters</u>.
- (d) Convert this equation to a system of first-order equations and write it using vector-matrix notation.
- 3. Consider the matrix

$$A = \left[\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{array} \right]$$

- (a) Find the eigenvalues.
- (b) Find the eigenvectors.
- (c) What is the dimension of the span of all the eigenvectors?
- (d) Does the algebraic system $A\mathbf{x} = \mathbf{0}$ have a unique solution?

- 4. Determine whether the following statements are TRUE or FALSE. <u>Note:</u> you must write the <u>entire</u> word TRUE or FALSE. You do <u>not</u> need to show your work for this problem.
 - (a) Let $y'' 2y' + y = e^t \cos t$. Then $y_p = e^t (A \cos t + B \sin t)$ is a suitable guess for the particular solution.
 - (b) Let $y'' + y' = t^2 + 1$. Then $y_p = At^2 + Bt + C$ is a suitable guess for the particular solution.
 - (c) Suppose the eigenvalues of a matrix are $\{-1, 0, 1\}$. Then the matrix is invertible.
 - (d) Let

$$A = \left[\begin{array}{rrrr} 1 & 3 & 4 \\ 0 & 0 & 7 \\ -1 & 0 & 2 \end{array} \right].$$

Then the \underline{sum} of its eigenvalues is 3.

- (e) The eigenvalues of the fourth-order equation y'''' y = 0 are distinct (i.e., different from each other).
- 5. Consider the system of differential equations $\mathbf{x}' = A\mathbf{x}$ with $A = \begin{bmatrix} -3 & 2 \\ -5 & 3 \end{bmatrix}$.
 - (a) Find the eigenvalues.
 - (b) Find the eigenvectors.
 - (c) Find the general solution.

(d) Solve the initial value problem with
$$\mathbf{x}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$
.

(e) What is the stability structure of the equilibrium solution?

THE END