ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. This exam is closed-book and no calculators are allowed. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. Consider the equation

$$
y^{\prime \prime}+\omega_{0}^{2} y=\cos \omega_{1} t
$$

(a) Find the general solution of the homogeneous equation.
(b) Find the particular solution of the non-homogeneous equation using the method of Undetermined Coefficients assuming that $\omega_{1} \neq \omega_{0}$.
(c) What is the suitable guess for the particular solution if $\omega_{1}=\omega_{0}$?
(d) Suppose $\omega_{1}>\omega_{0}$, but as time evolves, ω_{1} is getting closer and closer to ω_{0}. What happens to the qualitative behavior of the solution in this process? Is this change of behavior consistent with your answer to part (c)?
2. Consider the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t}
$$

(a) Find the general solution of the homogeneous equation.
(b) Find the Wronskian of the fundamental solutions of the homogeneous equation.
(c) Find the particular solution of the non-homogeneous equation using the method of Variation of Parameters.
(d) Convert this equation to a system of first-order equations and write it using vector-matrix notation.
3. Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(a) Find the eigenvalues.
(b) Find the eigenvectors.
(c) What is the dimension of the span of all the eigenvectors?
(d) Does the algebraic system $A \mathbf{x}=\mathbf{0}$ have a unique solution?
4. Determine whether the following statements are TRUE or FALSE. Note: you must write the entire word TRUE or FALSE. You do not need to show your work for this problem.
(a) Let $y^{\prime \prime}-2 y^{\prime}+y=e^{t} \cos t$. Then $y_{p}=e^{t}(A \cos t+B \sin t)$ is a suitable guess for the particular solution.
(b) Let $y^{\prime \prime}+y^{\prime}=t^{2}+1$. Then $y_{p}=A t^{2}+B t+C$ is a suitable guess for the particular solution.
(c) Suppose the eigenvalues of a matrix are $\{-1,0,1\}$. Then the matrix is invertible.
(d) Let

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
0 & 0 & 7 \\
-1 & 0 & 2
\end{array}\right]
$$

Then the sum of its eigenvalues is 3 .
(e) The eigenvalues of the fourth-order equation $y^{\prime \prime \prime \prime}-y=0$ are distinct (i.e., different from each other).
5. Consider the system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ with $A=\left[\begin{array}{ll}-3 & 2 \\ -5 & 3\end{array}\right]$.
(a) Find the eigenvalues.
(b) Find the eigenvectors.
(c) Find the general solution.
(d) Solve the initial value problem with $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(e) What is the stability structure of the equilibrium solution?

