1. Consider the equation

$$y'' + \omega_0^2 y = \cos \omega_1 t \; .$$

- (a) Find the general solution of the homogeneous equation.
- (b) Find the particular solution of the non-homogeneous equation using the method of <u>Undetermined Coefficients</u> assuming that $\omega_1 \neq \omega_0$.
- (c) What is the suitable guess for the particular solution if $\omega_1 = \omega_0$?
- (d) Suppose $\omega_1 > \omega_0$, but as time evolves, ω_1 is getting closer and closer to ω_0 . What happens to the qualitative behavior of the solution in this process? Is this change of behavior consistent with your answer to part (c)?

SOLUTION

- (a) Making the guess $y = e^{rt}$ gives $r^2 + \omega_0^2 = 0$ and $r_{1,2} = \pm i\omega_0$. Hence $y_h = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t$.
- (b) Since $\omega_1 \neq \omega_0$, this is a regular case for UC. Hence the guess is $y_p = A \cos \omega_1 t + B \sin \omega_1 t$. Substituting this guess in the equation gives

$$(-\omega_1^2 + \omega_0^2)(A\cos\omega_1 t + B\sin\omega_1 t) = \cos\omega_1 t$$

The solution is B = 0 and $A = \frac{1}{\omega_0^2 - \omega_1^2}$, so $y_p = \frac{\cos \omega_1 t}{\omega_0^2 - \omega_1^2}$.

- (c) If $\omega_1 = \omega_0$ this is an exceptional case for UC. Therefore, the suitable guess is multiplied by t as $y_p = At \cos \omega_1 t + Bt \sin \omega_1 t$.
- (d) As ω_1 approaches ω_0 , the y_p in part (b) has oscillations that grow without bound. When $\omega_1 = \omega_0$, i.e., part (c), this is the case of resonance, where the additional factor t corresponds to the unbounded growth of the amplitude. Hence, the unbounded growth of $A(\omega_1)$ is the precursor of resonance.

Note: a more complete explanation of the limit as ω_1 approaches ω_0 requires incorporating the initial data with the general solution (see lecture on April 10).

2. Consider the equation

$$y'' - 2y' + y = \frac{e^t}{t} \; .$$

- (a) Find the general solution of the homogeneous equation.
- (b) Find the Wronskian of the fundamental solutions of the homogeneous equation.
- (c) Find the particular solution of the non-homogeneous equation using the method of <u>Variation of Parameters</u>.
- (d) Convert this equation to a system of first-order equations and write it using vector-matrix notation.

SOLUTION

- (a) Making the guess $y = e^{rt}$ gives $r^2 2r + 1 = 0$ and $r_{1,2} = 1$. Hence $y_h = c_1 e^t + c_2 t e^t$.
- (b) Setting $y_1 = e^t$ and $y_2 = te^t$ gives $W = y_1y_2' y_1'y_2 = e^{2t}$.
- (c) Using VOP, $y_p = v_1 y_1 + v_2 y_2$, $f(t) = e^t / t$, and

$$\begin{array}{rcl} v_1' & = & -\frac{y_2 f}{W} = -\frac{t e^t \, e^t / t}{e^{2t}} = -1 \ , \\ v_2' & = & \frac{y_2 f}{W} = \frac{e^t \, e^t / t}{e^{2t}} = \frac{1}{t} \ . \end{array}$$

Therefore, $v_1 = -t$, $v_2 = \ln t$, and $y_p = te^t(\ln t - 1)$. Note that another particular solution is just $y_p = te^t \ln t$, since the te^t part is already contained in the homogeneous solution.

(d) Setting $x_1 = y$ and $x_2 = y'$ gives the 2x2 system $\mathbf{x}' = A\mathbf{x} + \mathbf{b}$, with $A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$ and $\mathbf{b}(t) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{e^t}{t}$.

3. Consider the matrix

$$A = \left[\begin{array}{rrr} 2 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{array} \right]$$

- (a) Find the eigenvalues.
- (b) Find the eigenvectors.
- (c) What is the dimension of the span of all the eigenvectors?
- (d) Does the algebraic system $A\mathbf{x} = \mathbf{0}$ have a unique solution?

SOLUTION

- (a) Since A is upper-triangular, $\lambda_1 = 0$ and $\lambda_2 = \lambda_3 = 2$.
- (b) For $\lambda_1 = 0$ the augmented form for $(A \lambda_1 I)\mathbf{v} = \mathbf{0}$ is

$$\left[\begin{array}{cccc|c} 2 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 2 & | & 0 \end{array} \right] \ ,$$

which gives the eigenvector (up to scalar multiplication) $\mathbf{v_1} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$.

For $\lambda_2 = \lambda_3 = 2$ the augmented form is

$$\left[\begin{array}{ccc|c} 0 & 0 & 1 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \ ,$$

which is a deficient case with only one eigenvector, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- (c) The span of $\mathbf{v_1}$ and $\mathbf{v_2}$ is a 2-dimensional subspace of \mathbb{R}^3 , i.e., a plane.
- (d) Since $\lambda_1 = 0$, it follows that det(A) = 0 and, therefore, $A\mathbf{x} = \mathbf{0}$ does not have a unique solution.

- 4. Determine whether the following statements are TRUE or FALSE. <u>Note:</u> you must write the <u>entire</u> word TRUE or FALSE. You do <u>not</u> need to show your work for this problem.
 - (a) Let $y'' 2y' + y = te^t \cos t$. Then $y_p = e^t(A \cos t + B \sin t)$ is a suitable guess for the particular solution.
 - (b) Let $y'' + y' = t^2 + 1$. Then $y_p = At^2 + Bt + C$ is a suitable guess for the particular solution.
 - (c) Suppose the eigenvalues of a matrix are $\{-1, 0, 1\}$. Then the matrix is invertible.
 - (d) Let

		3	4	
A =	0	0	7	
	[-1]	0	2	

Then the <u>sum</u> of the eigenvalues of is 3.

(e) The eigenvalues of the fourth-order equation y''' - y = 0 are distinct (i.e., different from each other).

SOLUTION

- (a) TRUE. This is <u>not</u> an exceptional case, since the characteristic roots are $r_{1,2} = 1$ and the corresponding homogeneous solutions are e^t and te^t , whereas, the forcing function, $e^t \cos t$, corresponds to $r = 1 \pm i$. Therefore, the standard guess will work, which is the given y_p . If you don't believe it, you can check that the solution is $y_p = e^t(-t\cos t + 2\sin t)$.
- (b) FALSE. This is an exceptional case, since the polynomial on the right-hand side shares the underlying solution with one of the roots, $r_1 = 0$. Hence, the right guess is $y_p = At^3 + Bt^2 + Ct$.
- (c) FALSE. Since $\lambda_2 = 0$, it follows that det(A) = 0 and A is not-invertible.
- (d) TRUE. The sum of the eigenvalues is equal to Tr(A) = 3.
- (e) TRUE. Setting $y = e^{rt}$ gives $r^4 1 = 0$. Taking the square-root gives $r^2 = \pm 1$ and another square-root yields $r_{1,2} = \pm 1$, $r_{3,4} = \pm i$. Hence, the roots are distinct.

5. Consider the system of differential equations $\mathbf{x}' = A\mathbf{x}$ with $A = \begin{bmatrix} -3 & 2 \\ -5 & 3 \end{bmatrix}$.

- (a) Find the eigenvalues.
- (b) Find the eigenvectors.
- (c) Find the general solution.
- (d) Solve the initial value problem with $\mathbf{x}(0) = \begin{bmatrix} 2\\ 3 \end{bmatrix}$.
- (e) What is the stability structure of the equilibrium solution?

SOLUTION

- (a) Using the formula $\lambda^2 Tr(A)\lambda + |A| = 0$ gives $\lambda^2 + 1 = 0$. Therefore, $\lambda_{1,2} = \pm i$ (i.e., $\alpha = 0, \beta = 1$).
- (b) $(A \lambda_1 I)\mathbf{v} = \mathbf{0}$ gives

$$\begin{bmatrix} -3-i & 2 & | & 0 \\ -5 & 3-i & | & 0 \end{bmatrix}$$

which gives one eigenvector as $\mathbf{v_1} = \begin{bmatrix} 2\\ 3+i \end{bmatrix}$ and the other one (corresponding to λ_2) is $\mathbf{v_2} = \mathbf{v_1}^* = \begin{bmatrix} 2\\ 3-i \end{bmatrix}$.

(c) Since this is a complex case we decompose the first eigenvector to real and imaginary parts as

$$\mathbf{v_1} = \begin{bmatrix} 2\\3+i \end{bmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix} + i \begin{bmatrix} 0\\1 \end{bmatrix} \equiv \mathbf{p} + i\mathbf{q}$$

and use the formulae for the two eigensolutions, to obtain

$$\mathbf{x_1}(t) = \mathbf{p}\cos t - \mathbf{q}\sin t = \begin{bmatrix} 2\cos t \\ 3\cos t - \sin t \end{bmatrix},$$
$$\mathbf{x_2}(t) = \mathbf{q}\cos t + \mathbf{p}\sin t = \begin{bmatrix} 2\sin t \\ \cos t + 3\sin t \end{bmatrix}.$$

With these, the general solution is given by $\mathbf{x}(t) = c_1 \mathbf{x_1} + c_2 \mathbf{x_2}$.

(d) Setting t = 0 in the general solution (i.e., $\cos t = 1$ and $\sin t = 0$) and equating to the initial values gives

$$\mathbf{x}(0) = \begin{bmatrix} 2c_1\\ 3c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$$

and $c_1 = 1$ and $c_2 = 0$. Therefore, $\mathbf{x}(t) = \mathbf{x_1} = \begin{bmatrix} 2 \cos t \\ 3 \cos t - \sin t \end{bmatrix}$.

THE END