MATH 24 - EXAM 3 - SOLUTIONS

1. Consider the equation

$$
y^{\prime \prime}+\omega_{0}^{2} y=\cos \omega_{1} t
$$

(a) Find the general solution of the homogeneous equation.
(b) Find the particular solution of the non-homogeneous equation using the method of Undetermined Coefficients assuming that $\omega_{1} \neq \omega_{0}$.
(c) What is the suitable guess for the particular solution if $\omega_{1}=\omega_{0}$?
(d) Suppose $\omega_{1}>\omega_{0}$, but as time evolves, ω_{1} is getting closer and closer to ω_{0}. What happens to the qualitative behavior of the solution in this process? Is this change of behavior consistent with your answer to part (c)?

SOLUTION

(a) Making the guess $y=e^{r t}$ gives $r^{2}+\omega_{0}^{2}=0$ and $r_{1,2}= \pm i \omega_{0}$. Hence $y_{h}=$ $c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t$.
(b) Since $\omega_{1} \neq \omega_{0}$, this is a regular case for UC. Hence the guess is $y_{p}=A \cos \omega_{1} t+$ $B \sin \omega_{1} t$. Substituting this guess in the equation gives

$$
\left(-\omega_{1}^{2}+\omega_{0}^{2}\right)\left(A \cos \omega_{1} t+B \sin \omega_{1} t\right)=\cos \omega_{1} t
$$

The solution is $B=0$ and $A=\frac{1}{\omega_{0}^{2}-\omega_{1}^{2}}$, so $y_{p}=\frac{\cos \omega_{1} t}{\omega_{0}^{2}-\omega_{1}^{2}}$.
(c) If $\omega_{1}=\omega_{0}$ this is an exceptional case for UC. Therefore, the suitable guess is multiplied by t as $y_{p}=A t \cos \omega_{1} t+B t \sin \omega_{1} t$.
(d) As ω_{1} approaches ω_{0}, the y_{p} in part (b) has oscillations that grow without bound. When $\omega_{1}=\omega_{0}$, i.e., part (c), this is the case of resonance, where the additional factor t corresponds to the unbounded growth of the amplitude. Hence, the unbounded growth of $A\left(\omega_{1}\right)$ is the precursor of resonance.
Note: a more complete explanation of the limit as ω_{1} approaches ω_{0} requires incorporating the initial data with the general solution (see lecture on April 10).
2. Consider the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{t}
$$

(a) Find the general solution of the homogeneous equation.
(b) Find the Wronskian of the fundamental solutions of the homogeneous equation.
(c) Find the particular solution of the non-homogeneous equation using the method of Variation of Parameters.
(d) Convert this equation to a system of first-order equations and write it using vector-matrix notation.

SOLUTION

(a) Making the guess $y=e^{r t}$ gives $r^{2}-2 r+1=0$ and $r_{1,2}=1$. Hence $y_{h}=c_{1} e^{t}+c_{2} t e^{t}$.
(b) Setting $y_{1}=e^{t}$ and $y_{2}=t e^{t}$ gives $W=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{2 t}$.
(c) Using VOP, $y_{p}=v_{1} y_{1}+v_{2} y_{2}, f(t)=e^{t} / t$, and

$$
\begin{aligned}
v_{1}^{\prime} & =-\frac{y_{2} f}{W}=-\frac{t e^{t} e^{t} / t}{e^{2 t}}=-1, \\
v_{2}^{\prime} & =\frac{y_{2} f}{W}=\frac{e^{t} e^{t} / t}{e^{2 t}}=\frac{1}{t} .
\end{aligned}
$$

Therefore, $v_{1}=-t, v_{2}=\ln t$, and $y_{p}=t e^{t}(\ln t-1)$. Note that another particular solution is just $y_{p}=t e^{t} \ln t$, since the $t e^{t}$ part is already contained in the homogeneous solution.
(d) Setting $x_{1}=y$ and $x_{2}=y^{\prime}$ gives the 2 x 2 system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{b}$, with $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right]$ and $\mathbf{b}(t)=\left[\begin{array}{l}0 \\ 1\end{array}\right] \frac{e^{t}}{t}$.
3. Consider the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

(a) Find the eigenvalues.
(b) Find the eigenvectors.
(c) What is the dimension of the span of all the eigenvectors?
(d) Does the algebraic system $A \mathbf{x}=\mathbf{0}$ have a unique solution?

SOLUTION

(a) Since A is upper-triangular, $\lambda_{1}=0$ and $\lambda_{2}=\lambda_{3}=2$.
(b) For $\lambda_{1}=0$ the augmented form for $\left(A-\lambda_{1} I\right) \mathbf{v}=\mathbf{0}$ is

$$
\left[\begin{array}{lll|l}
2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

which gives the eigenvector (up to scalar multiplication) $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. For $\lambda_{2}=\lambda_{3}=2$ the augmented form is

$$
\left[\begin{array}{rrr|r}
0 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which is a deficient case with only one eigenvector, $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
(c) The span of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ is a 2-dimensional subspace of \mathbb{R}^{3}, i.e., a plane.
(d) Since $\lambda_{1}=0$, it follows that $\operatorname{det}(A)=0$ and, therefore, $A \mathbf{x}=\mathbf{0}$ does not have a unique solution.
4. Determine whether the following statements are TRUE or FALSE. Note: you must write the entire word TRUE or FALSE. You do not need to show your work for this problem.
(a) Let $y^{\prime \prime}-2 y^{\prime}+y=t e^{t} \cos t$. Then $y_{p}=e^{t}(A \cos t+B \sin t)$ is a suitable guess for the particular solution.
(b) Let $y^{\prime \prime}+y^{\prime}=t^{2}+1$. Then $y_{p}=A t^{2}+B t+C$ is a suitable guess for the particular solution.
(c) Suppose the eigenvalues of a matrix are $\{-1,0,1\}$. Then the matrix is invertible.
(d) Let

$$
A=\left[\begin{array}{rrr}
1 & 3 & 4 \\
0 & 0 & 7 \\
-1 & 0 & 2
\end{array}\right]
$$

Then the sum of the eigenvalues of is 3 .
(e) The eigenvalues of the fourth-order equation $y^{\prime \prime \prime \prime}-y=0$ are distinct (i.e., different from each other).

SOLUTION

(a) TRUE. This is not an exceptional case, since the characteristic roots are $r_{1,2}=1$ and the corresponding homogeneous solutions are e^{t} and $t e^{t}$, whereas, the forcing function, $e^{t} \cos t$, corresponds to $r=1 \pm i$. Therefore, the standard guess will work, which is the given y_{p}. If you don't believe it, you can check that the solution is $y_{p}=e^{t}(-t \cos t+2 \sin t)$.
(b) FALSE. This is an exceptional case, since the polynomial on the right-hand side shares the underlying solution with one of the roots, $r_{1}=0$. Hence, the right guess is $y_{p}=A t^{3}+B t^{2}+C t$.
(c) FALSE. Since $\lambda_{2}=0$, it follows that $\operatorname{det}(A)=0$ and A is not-invertible.
(d) TRUE. The sum of the eigenvalues is equal to $\operatorname{Tr}(A)=3$.
(e) TRUE. Setting $y=e^{r t}$ gives $r^{4}-1=0$. Taking the square-root gives $r^{2}= \pm 1$ and another square-root yields $r_{1,2}= \pm 1, r_{3,4}= \pm i$. Hence, the roots are distinct.
5. Consider the system of differential equations $\mathbf{x}^{\prime}=A \mathbf{x}$ with $A=\left[\begin{array}{ll}-3 & 2 \\ -5 & 3\end{array}\right]$.
(a) Find the eigenvalues.
(b) Find the eigenvectors.
(c) Find the general solution.
(d) Solve the initial value problem with $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(e) What is the stability structure of the equilibrium solution?

SOLUTION

(a) Using the formula $\lambda^{2}-\operatorname{Tr}(A) \lambda+|A|=0$ gives $\lambda^{2}+1=0$. Therefore, $\lambda_{1,2}= \pm i$ (i.e., $\alpha=0, \beta=1$).
(b) $\left(A-\lambda_{1} I\right) \mathbf{v}=\mathbf{0}$ gives

$$
\left[\begin{array}{cc|c}
-3-i & 2 & 0 \\
-5 & 3-i & 0
\end{array}\right]
$$

which gives one eigenvector as $\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}2 \\ 3+i\end{array}\right]$ and the other one (corresponding to $\left.\lambda_{2}\right)$ is $\mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}{ }^{*}=\left[\begin{array}{c}2 \\ 3-i\end{array}\right]$.
(c) Since this is a complex case we decompose the first eigenvector to real and imaginary parts as

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
2 \\
3+i
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]+i\left[\begin{array}{l}
0 \\
1
\end{array}\right] \equiv \mathbf{p}+i \mathbf{q}
$$

and use the formulae for the two eigensolutions, to obtain

$$
\begin{aligned}
& \mathbf{x}_{\mathbf{1}}(t)=\mathbf{p} \cos t-\mathbf{q} \sin t=\left[\begin{array}{c}
2 \cos t \\
3 \cos t-\sin t
\end{array}\right], \\
& \mathbf{x}_{\mathbf{2}}(t)=\mathbf{q} \cos t+\mathbf{p} \sin t=\left[\begin{array}{c}
2 \sin t \\
\cos t+3 \sin t
\end{array}\right] .
\end{aligned}
$$

With these, the general solution is given by $\mathbf{x}(t)=c_{1} \mathbf{x}_{\mathbf{1}}+c_{2} \mathbf{x}_{\mathbf{2}}$.
(d) Setting $t=0$ in the general solution (i.e., $\cos t=1$ and $\sin t=0$) and equating to the initial values gives

$$
\mathbf{x}(0)=\left[\begin{array}{c}
2 c_{1} \\
3 c_{1}+c_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

and $c_{1}=1$ and $c_{2}=0$. Therefore, $\mathbf{x}(t)=\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{c}2 \cos t \\ 3 \cos t-\sin t\end{array}\right]$.
THE END

