READ ALL THE INSTRUCTIONS!

- 2. This exam is closed-book and no calculators are allowed. You are allowed 3 crib sheets $(8.\times11^{\circ})$. There are EIGHT problems on this exam. You need to solve ALL EIGHT of them (in any order you like). Start each problem on **the top of a new page.**
- 3. Write a grading grid (enumerated 1..8) on the front of your bluebook.
- 4. Each problem is worth 20 points for a total of 200 points. To get full credit, you must SHOW YOUR WORK and EXPLAIN ALL THE STEPS IN YOUR SOLUTION. A correct answer with no explanation will not receive credit. The only exceptions are <u>Problems 7 and 8</u>, for which you only need to fill in your answer on your exam sheet.
- 5. When you are done, hand in your exam sheet and blue book together.
- 1. Consider the ordinary differential equation (ODE) $\frac{dy}{dt} = y^2 + 2y$.
 - (a) Classify this ODE in terms of (1) linear/nonlinear, (2) autonomous/non-autonomous,(3) separable/non-separable? Explain.
 - (b) What is an equilibrium solution (in general)? What are the equilibrium solutions for this ODE? Explain your answer.
 - (c) What is a stable equilibrium solution (in general)?
 - (d) Sketch the phase lines for this ODE in the *ty* plane and discuss the stability of the equilibrium solutions.
- 2. Consider the ODE ty' + y = 1.
 - (a) Solve this equation using the method of Separation of Variables.
 - (b) Solve this equation using the method of Integrating Factor.
 - (c) What is the equilibrium solution for this equation? Discuss its stability.
 - (d) Consider the ODE $tu' = u u^2$. Make the change of variables $u(t) = \frac{1}{y(t)}$ to obtain an ODE for y(t). What is the general solution for u(t)?

3. Consider the following three vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 2\\4\\0 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 0\\3\\2 \end{bmatrix}.$$

- (a) Are these vectors linearly dependent or independent?
- (b) What is the vector space spanned by these vectors and what is its dimension?
- (c) Find a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 that equals the vector $[4, 1, 0]^T$.

4. Consider the system of ODEs
$$\mathbf{x}' = A\mathbf{x}$$
 with $A = \begin{bmatrix} 5 & -2 \\ 8 & -5 \end{bmatrix}$.

- (a) Find the eigenvalues.
- (b) Find two linearly independent eigenvectors.
- (c) Construct two real-valued, linearly independent solutions of this system.
- (d) Using your answer to c) solve the initial value problem with $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- 5. Consider the ODE $y'' y = e^{-t}$.
 - (a) Find the general solution of the homogeneous equation.
 - (b) Find a particular solution of the non-homogeneous equation using the method of Undetermined Coefficients.
 - (c) Same as b) using the method of Variation of Parameters.
 - (d) Are your answers for b) and c) identical? Explain why.

- OVER -

6. The populations of two species, x(t) and y(t), are described by the following system of ODEs

$$x' = (1-2x)(2-4x-y) y' = y(6-2x-3y)$$

- (a) Find the nullclines and sketch them in the *xy* plane (for $x \ge 0, y \ge 0$).
- (b) Find and list the equilibrium points. Mark them on your sketch.
- (c) Sketch the representative trajectories of the solutions (for clarity, you may want to make a new plot).
- (d) One of the equilibrium points has x > 0 and y > 0. Linearize the system around this point and determine the stability structure of this point.
- (e) Can the two species co-exist in the long run? Explain.

- OVER -

Match the following ODE systems with the phase plane portraits shown in the figures.
Write the matching number in the box provided next to the equation (no explanation is needed).

– OVER –

8. For each question below, **mark either the TRUE or FALSE box.** Each of the 10 questions is worth 2 points. A 5 point bonus will be awarded if you get all of them correctly.

(a)
$$y(t) = \cos(t)$$
 is a solution of $y'' + (\sin^2 t + y^2)y = 0$. TRUE FALSE

- (b) For the initial value problem $y' = y^2$ with y(0) = 1 Picard's Theorem guarantees the existence and uniqueness of a solution. TRUE FALSE
- (c) For the initial value problem $y' = y^2$ with y(0) = 1 a solution exists for $-\infty < t < \infty$. TRUE FALSE
- (d) If A and B are matrices of size $n \times n$ and A is invertible then $A^{-1}(AB)^T = B^T$. TRUE FALSE

		1	0	-1			
(e)	The RREF of	7	2	3	is the identity matrix.	TRUE	FALSE
		5	1	0			

- (f) Vectors that form a basis can be linearly dependent. TRUE FALSE
- (g) The ODE $y'' + ty' + t^2y = 0$ has three linearly independent solutions. TRUE FALSE
- (h) The matrices $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $B = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$ have the same eigenvalues for any values of a, b, c, d. TRUE FALSE

(i) The equilibrium solution of the ODE system $\begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} = \begin{bmatrix} k & 2 \\ -2 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is unstable when k < 0. TRUE FALSE

(j) One of the eigenvalues of the ODE
$$y''' - y'' + y' - y = 0$$
 is $\lambda = i$. TRUE FALSE

THE END