Math 24

Exam 1: February 21, 2007
ON THE FRONT OF YOUR BLUEBOOK WRITE (1) YOUR NAME, (2) A FIVE-PROBLEM GRADING GRID. Show ALL of your work in your bluebook, and box in your final answers. A correct answer, but without the relevant work, will receive no credit. You are allowed a one-page crib sheet. Start each problem on the top of a new page. Each problem is worth 20 points, for a total of 100 points. You can solve the problems in any order you like.

1. Classify the following equations as best you can:
(a) $\frac{d y}{d t}=\frac{1+t^{2}}{y}$,
(b) $\frac{d y}{d t}=\frac{y}{1+t^{2}}$.
2. Answer the following TRUE/FALSE questions (write the word TRUE or FALSE; you do not need to show your work for this problem):
(a) $y(x)=\cos x$ is a solution of the equation

$$
\frac{d^{2} y}{d t^{2}}+\left(\sin ^{2} x\right) y+y^{3}=0 .
$$

(b) Picard's theorem guarantees the local existence and uniqueness of a solution of

$$
\frac{d y}{d x}=\frac{y}{x}, \quad y(0)=1 .
$$

(c) $\mathcal{L} x=2 x+1$ is a linear operator.
3. Consider the IVP $\frac{d y}{d t}=(a-y)^{2}, \quad y(0)=y_{0}$, where a is a positive constant, and answer the following questions:
(a) Sketch the phase lines and directions fields.
(b) Classify the stability type of the equilibrium point(s).
(c) Find the solution of the IVP.
(d) How does the solution behave when $y_{0}=a+0.1$?
4. Find the general solution of $\frac{d y}{d x}-y=3 e^{x}$.

TURN OVER

5. Match the following equations (1)-(4) with their corresponding direction fields A-D.

THE END

